LIBRARY UNIVERSITY OF CALIFORNIA DAVIS # State of California THE RESOURCES AGENCY Department of Water Resources BULLETIN No. 130-65 HYDROLOGIC DATA: 1965 Volume I: NORTH COASTAL AREA DECEMBER 1966 MAY 8 1967 HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources LIBRARY UNIVERSITY OF CALIFORNIA # State of California THE RESOURCES AGENCY ### Department of Water Resources BULLETIN No. 130-65 HYDROLOGIC DATA: 1965 Volume I: NORTH COASTAL AREA DECEMBER 1966 HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources #### ORGANIZATION OF BULLETIN NO. 130 SERIES Volume I - NORTH COASTAL AREA Volume II - NORTHEASTERN CALIFORNIA Volume III - CENTRAL COASTAL AREA Volume IV - SAN JOAQUIN VALLEY Volume V - SOUTHERN CALIFORNIA Each volume consists of the following: #### TEXT and Appendix A - CLIMATE Appendix B - SURFACE WATER FLOW Appendix C - GROUND WATER MEASUREMENTS Appendix D - SURFACE WATER QUALITY Appendix E - GROUND WATER QUALITY #### FOREWORD The Bulletin No. 130 series of reports incorporates data on surface water, ground water, and climate previously published annually in Bulletin Nos. 23, 39, 65, 66, and 77. With the inauguration of this series of reports, publication of the earlier reports was suspended. This is the third in the new series of reports. Bulletin No. 130 is published annually in five volumes, each volume reporting hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. This report is Volume I, "North Coastal Area". It includes five appendixes of detailed hydrologic data: Appendix A, "Climate", Appendix B, "Surface Water Flow", Appendix C, "Ground Water Measurements", Appendix D, "Surface Water Quality", and Appendix E, "Ground Water Quality". The collection and publication of data contained in Bulletin No. 130 is authorized by Sections 225, 226, 228, 229, 232, 345, 12609, 12616, and 12622 of the California Water Code. The hydrologic data programs of the Department of Water Resources are designed to supplement the activities of other agencies and present useful, comprehensive, accurate, and timely hydrologic data to the public. Other agencies have generously assisted in collecting much of the data presented in this bulletin. I wish especially to acknowledge the helpful assistance given by the Geological Survey, the Forest Service, the Weather Bureau, the local County Farm Advisors of the Agricultural Extension Service, the California Department of Public Health, and the many local weather observers who have so unselfishly given of their time. William E. Warne, Director Department of Water Resources The Resources Agency State of California Avil E. Louis December 12, 1966 #### TABLE OF CONTENTS | | Page | |--------------|--| | ORGANIZATION | OF BULLETIN NO. 130 SERIES | | FOREWORD . | | | AREA ORIENTA | TION MAP iv | | METRIC CONVE | RSION TABLE | | ORGANIZATION | , DEPARTMENT OF WATER RESOURCES ix | | ABSTRACT . | | | TEXT | | | | APPENDIXES | | Appendix | | | A | CLIMATE | | В | SURFACE WATER FLOW | | С | GROUND WATER MEASUREMENTS | | D | SURFACE WATER QUALITY | | E | GROUND WATER QUALITY | | | FIGURES | | Figure | | | A-1 | Mean Seasonal Precipitation | | B-1 | Surface Water Measurement and Quality Monitoring Stations, 1964-65 | | C-1 | Ground Water Basins, 1964-65 | #### TABLES | Table | | Page | |--------------|--|----------------------------------| | A-1 | Index of Climatological Stations for 1964-65 | 11 | | A-2 | Precipitation Data for 1964-65 | 13 | | A-3 | Storage Gage Precipitation Data for 1964-65 | 15 | | A-4 | Temperature Data for 1964-65 · · · · · · · · · · · · · · · · · · · | 16 | | A-5 | Evaporation Data for 1964-65 · · · · · · · · · · · · · · · · · · · | 18 | | B-1 | Daily Mean Discharge | | | | Shasta River at Edgewood Little Shasta River near Montague Etna Creek near Etna Moffett Creek near Fort Jones Weaver Creek near Douglas City Browns Creek near Douglas City North Fork Trinity River at Helena Big Creek near Hayfork | 27
28
29
30
31
32 | | B-2 | Streamflow Measurements at Miscellaneous Sites | 34 | | C-l | Average Ground Water Level Changes in North Coastal Area Basins, Spring 1964 - Spring 1965 | 42 | | C-2 | Ground Water Levels at Wells | 43 | | D-1 | Index of Sampling Stations | 53 | | D-2 | Analyses of Surface Water | 5 ⁴ | | D - 3 | Analyses of Trace Elements in Surface Water | 81 | | E-1 | Analyses of Ground Water | 87 | | Plate | PLATES (Bound at back of bulletin) | | | 1 | Climatological Observation Stations, 1964-65 | | #### METRIC CONVERSION TABLE | ENGLISH UNIT | EQUIVALE | ENT METRIC UNIT | |-------------------------------|----------|-------------------------| | Inch (in) | 2.54 | Centimeters | | Foot (ft) | 0.3048 | Meter | | Mile (mi) | 1.609 | Kilometers | | Acre | 0.405 | Hectare | | Square mile (sq. mi.) | 2.590 | Square kilometer | | U. S. gallon (gal) | 3.785 | Liters | | Acre foot (acre-ft) | 1,233.5 | Cubic meters | | U. S. gallon per minute (gpm) | 0.0631 | Liters per second | | Cubic feet per second (cfs) | 1.7 | Cubic meters per minute | ## State of California The Resources Agency DEPARIMENT OF WATER RESOURCES EDMUND G. BROWN, Governor HUGO FISHER, Administrator, The Resources Agency WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer JOHN R. TEERINK, Assistant Chief Engineer, Area Management ----- #### NORTHERN DISTRICT | Gordon W. Dukleth District Director | |---| | Wayne S. Gentry Chief, Operations Section | | Activities covered by this report were under the supervision of | | Robert F. Middleton, Jr Chief, Hydrologic Data Unit | | Assisted by | | Lester L. Lighthall | | Linwood L. Bates Redding Field Office | | Walter D. McIntyre Colusa Field Office | | Charles G. Hodge | | Seth K. Barrett | | Lee R. Gibson | | | Reviewed and coordinated by Statewide Planning Office Data Coordination Branch #### ABSTRACT Tables show data on climate and ground water levels for the period July 1, 1964 to June 30, 1965; and on surface water flow and surface and ground water quality for the period October 1, 1964 to September 30, 1965. Figures show mean seasonal precipitation, surface water measurement and quality monitoring stations and ground water basins. A foldout plate shows locations of climatological observation stations. The Department of Water Resources is concerned with the development and use of water supplies and with the methods that are employed to observe and measure hydrologic conditions. Hydrologic data are used for the planned development of new water supplies including its uses for irrigation, drainage, hydropower, flood control, navigation, recreation, and fisheries enhancement; the operation of existing projects; and other associated engineering projects. The Department's hydrologic data programs are also designed to supplement and augment the activities of other agencies. The tabulation on page 2 presents a summary of the active hydrologic data programs in the North Coastal Area during 1964-65. The table specifies the origin of the programs, program objectives, program authorizations, the type of data collected, the collection agency, the frequency of measurement or service, and the total number of stations measured during 1964-65. The Department's climatologic and surface water measurement stations have been selected to augment the basic hydrologic networks of the U. S. Weather Bureau and U. S. Geological Survey, respectively. The current federal hydrologic data programs are normally not sufficient to meet the many needs of the State. The climatologic data collected by the Department include information on precipitation, temperature, and evaporation. Both surface water flow and recharge to ground water vary in direct response to precipitation. Evaporation is an important part of the consumptive use of water and, with other climatological events, affect conditions and use of a water supply. Ground water is the source of supply for about one-half of the water beneficially used in California. However, the use of ground water in the North Coastal Area is less extensive than in other areas of the State. Data on the SUPEARY OF HYDROLOGIC DATA IN THE NORTH COASTAL AREA, 1964-65 | | | *** | | | Q | Data | | |---------------------------|--------|--|--|--------------------------------|---------------------------------------|---|----------------------------| | Program 8 | Origin | Purpose | : Authorization | : Type Collected | : Collected by | Frequency Measured
or Serviced | : Number of | | Climatologic Data | 1956 | 7 8 | Secs. 228,
12609, 12616 | Precipitation
Precipitation | DWR Cooperators
USWB | Daily
Daily | 148
72 | | | | conditions to: (1) predict
runoff; (2) plan and operate
water projects; and (3) make | or warter code | Storage Gages
Storage Gages | DWR
USWB | Annually
Annually | 9 5 2 | | | | all weather data available
for ready use. | | Temperature
Temperature | DWR Cooperators
USWB. |
Daily
Daily | 17 5 | | | | | | Evaporation
Evaporation | DWR Cooperators
USWB | Daily
Daily | t 5 | | | | | | Wind | USWB | Daily | Not measured
in 1964-65 | | Surface Mater Measurement | 1924 | To provide an inventory of data on surface water which will be readily available for: (1) forecasting streamflow; (2) planning water development projects; (3) operation of flood control and multipurpose projects; and (4 formulation of agreements on water rights without expensive littgation. | Sees, 225,
1 226, 228,
12609, 12616
n- of Water Code
vv-
ra-
(4) | Streamflow | DWR | Serviced twice each month, measured monthly | ω | | Ground Water Measurement | 1929 | To compile representative ground water data, so that: (1) information will be readily available for future conjunctive operations; (2) appraisal can be made of drainage and overdraft problems; (3) local interest and cooperation will be stimulated; and (4) planning to develop the potential ground water basins can be facilitated | Secs. 225, 226, 228, 12609 of Water Code | Depth to Ground USGS | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Monthly | £ | | 1 | | | | 0.0 | | Data | rd. | | |------------|-------------------------------|----------|--|--|--|--|---|---------------------------| | | Program | s Origin | Purpose | : Authorization: | : Type Collected : Collected by : or Serviced | Collected by : | red | : Number of | | l w | Surface Water
Quality Data | 1951 | To compile representative Sec. 226, 229 surface water quality data 12609, 12616 to: (1) determine the qual— of Water Code ity of the State"s surface waters; (2) detect changes in quality and alert control agencies when adverse changes | Sec. 226, 229
12609, 12616
- of Water Code | Mineral (Standard DWR mineral semiannu-
ally, partial mineral remaining months) | DWR DWR | Monthly
Semiannually | 8 33 | | | | | ocour; (3) determine trends; (4) record and catalogue the data in a readily available form; and (5) disseminate the data and information oollected. | | Racteriological | DWR | Monthly | 1 π | | -3- | Ground Water
Quality Data | 1953 | To compile representative ground water quality data to: (1) establish existing | Seo. 226, 229,
12609, 12616,
of Water Code | Standard and pertial mineral | DWR and local
county farm
advisors | Annually | ₹ | | | | | ground water Dodies; (2) determine the quality of the State's ground waters; (3) detect changes in quality and alert control agencies when adverse changes occur; (4) determine trends; and (5) provide for organization and ready dissemination of ground water quality data. | (2) | Trace Elements
(heavy metals) | DWR and local
county farm
advisors | Selected intervals Not sampled in 1964-65 | Not sampled
in 1964-65 | current status of the major ground water basins are collected and processed within the framework of the Department's Ground Water Measurement Program. During 1964-65, monthly field measurements were made by the U.S. Geological Survey. The Department reviews, processes, and edits the data. Since only a few wells are measured in many of the monitored ground water basins, it is difficult to derive meaningful values for the average changes in water levels. However, the historical measurements do indicate trends in local ground water levels. Water quality is a measure of a water supply's characteristics which affect the useability of the water. As greater demand is placed on available water supplies, more effective use and reuse of the State's waters become necessary. Since quality may limit the useability of a water, knowledge of quality conditions is necessary for the most efficient use of water supplies. Efforts are continuously being made to improve the quality and useability of the hydrologic data networks of both the federal government and the State. The future conduct of the hydrologic data programs in the North Coastal Area, particularly with respect to the water quality and ground water measurement activities, will be to reduce the frequency of measurements at a number of stations and yet continue to retain the quality of data currently obtained. An increasing effort is being made to more adequately define the ground water aquifer through geologic investigations. With this increased emphasis on the differentiation between the various ground water zones, the data collected can be made more useful and meaningful. APPENDIX A CLIMATE #### CLIMATE The Department of Water Resources cooperates with the U. S. Weather Bureau and local agencies in the collection of climatological data. Climatological data programs are dependent, for the most part, on the cooperation of local observers. Data from selected key stations are published by both the Department and the U. S. Weather Bureau. The tables in this appendix include total monthly and seasonal precipitation; monthly temperatures showing maximum, average maximum, average, average minimum, and minimum temperatures; evaporation data showing the total evaporation monthly for the period July 1, 1964 through June 30, 1965; and total annual precipitation for 1964-65 as measured at the storage gages in the northern part of the State (so installed because of their extreme remoteness). The reporting period for climatologic data is defined as the 15-month period from July 1 of one year through September 30 of the subsequent year. Climatologic data for the period July 1, 1965 through September 30, 1965 were not available for this report. Most of the stations use standard meteorological equipment. Commonly accepted procedures are employed in summing up monthly totals and computing mean values. In the preparation of the mean seasonal isohyetal map (Figure A-1) the long term mean values are based on the 50-year mean period 1905-06 to 1954-55 for those stations with sufficient length of record. At other stations, all available records are used in determining the mean. Station density in the North Coastal Area is generally adequate for making reasonable estimates of average conditions over extended areas, with the possible exception of the areas in the high altitudes. In some instances the weather data program has been hampered by relatively inaccessible mountainous areas and an inability to obtain the services of qualified local weather observers. A description of the tables and plates included in this appendix follows: Table A-1, "Index of Climatological Stations", contains a listing of all active climatological stations in the North Coastal Area during the period July 1, 1964 through June 30, 1965. The station names are arranged in alphabetical order. Each station is given a code number which is composed of two parts -- a drainage basin designation, and an Alpha Order Number which corresponds to the alphabetical sequence of the station with respect to the other stations in that drainage basin. A sub-number of two digits is occasionally affixed to the four-digit Alpha Order Number. This is necessary to provide for greater flexibility as new stations are added to the listing. The cooperator index number is used when the Alpha Order Number is in conflict with the U. S. Weather Bureau number. Other information is also given, including the year in which the record was begun, the year the record ended, and the years of missing record. The code for the county in which the station is located is shown below: | County | Code | |-----------|------| | Del Norte | 08 | | Humboldt | 12 | | Mendocino | 23 | | Modoc | 25 | | Siskiyou | 47 | | Trinity | 53 | Table A-2, "Precipitation Data", contains a listing of all precipitation measurements collected in the North Coastal Area during the period July 1, 1964 through June 30, 1965. The listing is in alphabetical order by station name. The table includes a summary of total seasonal precipitation and lists each monthly amount. Table A-3, "Storage Gage Precipitation Data," presents the total 1964-65 seasonal precipitation at a number of storage gages located in remote regions in the North Coastal Area. Table A-4, "Temperature Data", describes air temperature data collected by the Department of Water Resources in the North Coastal Area. The stations are listed in alphabetical order. A listing by drainage basin and Alpha Order Number is also given. A column titled "Season" summarizes the extreme values of temperature reported at each station and also lists the mean of the monthly values. The maximum, average maximum, average, average minimum, and minimum monthly values are given for each station, and are based on 1964-65 data. Table A-5, "Evaporation Data", describes the data collected from all evaporation stations in the North Coastal Area. This information is used to determine loss of water by evaporation from existing and proposed water storage and conveyance facilities. The stations are listed alphabetically. The table includes a listing of drainage and Alpha Order Numbers corresponding to the station names. Total evaporation is shown for each month during the period July 1, 1964 through June 30, 1965. Figure A-1, "Mean Seasonal Precipitation", shows the rainfall pattern over the North Coastal Area. Lines of equal mean seasonal precipitation are drawn to define the normal amounts. The lines represent normals based on a 50-year mean period of 1905-06 through 1954-55. Plate 1, "Climatological Observation Stations", shows the locations of all actively reporting climatological stations in the North Coastal Area. These include the
U. S. Weather Bureau stations reported in the U. S. Department of Commerce monthly publication, "Climatological Data", and many stations operated by cooperative observers. A legend on the map describes the symbols used for the various types of measuring equipment and observation made. ### TABLE A-I INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65 NORTH COASTAL AREA | | Station | =- | | | | | Troct | Meridian | | _ | | | • | | for | tor's | | | Code | |---|---|------------------------|-------------------|----------------|--------------------------------------|----------------------|-------------|-----------------------|-------------------|----------------|----------------|-------------------|----------------|----------------|---------------------------------|---------------------------------|--------------------------------------|--------|------------------------------| | Number | Nome | Elevotion
(in faet) | Section | | Township | Renge | 40-Acre T | Bose & Me | | Latitude | | | Longitude | | Cooperator | Cooperotor's
index
Number | Record | Record | Years Missing
County Code | | | <u> </u> | <u> </u> | | | | | 14 | ě | 0 | , | // | 0 | /_ | Ħ | | | | | ٥١٩ | | F6 0018
F6 0088
F5 0253
F3 0715
F4 0738 | ADANAC LODGE ALDERPOINT ARCATA A P BESWICK 7 S BIG BAR RANGER STA | 435
217
6140 | SEC
SEC
SEC | 27
19
33 | T23N
T03S
T07N
T47N
T33N | ROSE
ROSE
ROSW | Q | H
H
M | 40
40
41 | 11
58
52 | 00
18
00 | 123
124
122 | 36
05
14 | 00
24
00 | 000
900
000
900
900 | | 1950
1940
1957
1952
1943 | | 23
12
12
47
53 | | F5 0764
F2 0786-01
F3 0899
F5 0901
F5 0903 | BIG LAGOON
BIG SPRINGS 4 E
BLUE CREEK MTN LO
BLUE LAKE
BLUE LAKE REDWOOD CR | 2955
4870
105 | SEC
SEC
SEC | 05
30
30 | T09N
T43N
T12N
T06N
T06N | RO4W
RO4E
RO2E | R
R
A | м
Н | 41
41
40 | 35
23
52 | 30
42
54 | 122
123
123 | 19
45
59 | 42
54
12 | 000
900 | PN2125 | 1947
1960
1960
1951
1956 | | 12
47
08
12
12 | | F4 0929
F6 1046
F1 1050
F6 1080
F6 1083 | BOARDCAMP MTN
BRANSCOMB 2 NW
BRAY 10 WSW
BRIDGEVILLE 4 NNW
BRIDGEVILLE P 0 | 1480
5759
2050 | SEC
SEC | 09
24
27 | T04N
T21N
T43N
T02N
T01N | R16W
R03W
R03E | М | м
м
Н | 39
41
40 | 41
34
31 | 12
00
00 | 123
122
123 | 39
08
49 | 36
00
00 | 000
900
900
900
900 | | 1963
1959
1951
1954
1959 | | 12
23
47
12
12 | | F6 1181
F6 1210
F4 1215
F4 1215-15
F2 1316 | BULL CREEK
BURLINGTON ST PARK
BURNT RANCH 1S
BURNT RCH HMS
CALLAHAN RANGER STA | 200
2150
1500 | SEC
SEC | 12
23
14 | T01S
T02S
T05N
T05N
T40N | ROSE
ROSE
ROSE | D
E
F | $_{\rm H}$ $_{\rm H}$ | 40
40
40 | 18
47
48 | 30
48
30 | 123 | 54
28
28 | 24
48
30 | 000 | | 1960
1950
1945
1963
1943 | | 12
12
53
53
47 | | F0 1446
F7 1505
F3 1606
F6 1608
F3 1799 | CAMP SIX LOOKOUT CAPE RANCH CECILVILLE 5 SE CEDAR CREEK HATCHERY CLEAR CREEK | 710
2980
950 | SEC
SEC
SEC | 23
12
14 | T17N
T01N
T37N
T23N
T15N | RO3W
R11W
R17W | F | H
M
M | 40
41
39 | 27
06
50 | 24
00
24 | 124
123
123 | 22
03
42 | 48
00
18 | 900 | | 1963
1959
1954
1957
1959 | | 08
12
47
23
47 | | F4 1886
F3 1990
F6 2081
F6 2084
F0 2147 | COFFEE CREEK RS COPCO DAM NO 1 COVELO COVELO EEL RIVER RS CRESCENT CITY 1 N | 2700
1385
1514 | SEC
SEC
SEC | 29
12
28 | T07W
T48N
T22N
T23N
T16N | RO4W
R13W
R11W | Р | M
M
M | 39 | 59
47
50 | 00 | 123 | 20
15
05 | 00 | 900
900 | | 1960
1928
1921
1940
1885 | | 53
47
23
23
08 | | F0 2148
F0 2150
F0 2152
F1 2188
F6 2218 | CRFSCENT CITY 7 ENE
CRESCENT CITY HMS
CRESCENT CITY 11 E
CROWDER FLAT
CUMMINGS | 50
360
5175 | SEC
SEC | 20
30
20 | T16N
T16N
T16N
T47N
T23N | RO1W
RO2E
R11E | ВК | HHM | 4 1
4 1
4 1 | 46
45
53 | 00
18
00 | 124
123 | 12
59
44 | 00
30
00 | | PN2188 | 1913
1941
1947
1958
1927 | | 08
08
08
25
23 | | F1 2480
F6 2490
F0 2749
F2 2899
F6 2910 | DORRIS INSPECT STA
DOS RIOS
ELK VALLEY
ETNA
EUREKA WB CITY | 927
1711
2912 | SEC
SEC | 31
34
28 | T48N
T22N
T19N
T42N
T05N | R13W
R04E
R09W | | M
H
M | 39 | 43
00
28 | 00 | | 21
43
54 | 00 | 000
900
900
900
900 | | 1959
1917
1938
1935
1878 | | 47
23
08
47
12 | | F7 3025
F6 3030
F5 3041
F3 3122
F4 3130 | FERNDALE 8 SSW
FERNDALE 2NW
FIELDBROOK 4 D RCH
FOOTHILL SCHOOL
FOREST GLEN | 10
285
2960 | SEC
SEC
SEC | 34
36
25 | T01N
T03N
T07N
T46N
T015 | RO2W
RO1E
RO5W | K
P
F | HHM | 40
40
41 | 35
56
48 | 54
36
42 | 124
124
122 | 16
01
22 | 36
06
18 | 900
000 | | 1959
1963
1956
1962
1930 | | 12
12
12
47
53 | | F3 3151
F0 3173
F2 3176
F2 3182
F6 3194 | FORKS OF SALMON
FORT DICK
FORT JONES 6 ESE
FORT JONES RANGER ST
FORTUNA | 46
3324
2720 | SEC
SEC
SEC | 14
12
02 | T10N
T17N
T43N
T43N
T03N | RO1W
RO8W
RO9W | c | H
M
M | 4 1
4 1
4 1 | 52
35
36 | 00
00
00 | 124
122
122 | 09
43
51 | 00 | 900
900
900 | | 1959
1951
1941
1936
1955 | | 47
47
47
12 | | FO 3357 | FOX CAMP
GAPBERVILLE
GAPBERVILLE HMS
GASQUET RANGER STA
GAZELLE - EPPERSON | 340
540
384 | SEC
SEC
SEC | 24
24
21 | T025
T045
T045
T17N
T43N | RO3E
RO3E
RO2E | G
N | H
H
H | 40
40
41 | 06
06
52 | 00
00 | 123
123
123 | 48
47
58 | 00
40
00 | 900
809
900 | | 1960
1938
1935
1940
1950 | | 12
12
12
08
47 | | F2 3363
F2 3363-05
F1 3564
F2 3614
F6 3647 | GAZELLE LOOKOUT GAZELLE TUCKER GRASS LAKE HMS GREENVIEW GRIZZLY CRK REDWOOD | 2690
5080
2818 | SEC
SEC
SEC | 16
28
29 | T41N
T43N
T44N
T43N
T01N | RO6W
RO3W
RO9W | G | M
M
M | 4 1
4 1
4 1 | 34
37
33 | 30
48
00 | 122
122
122 | 32
11
54 | 36
30
00 | 000 | | 1956
1964
1954
1943
1963 | | 47
47
47
47
12 | | F3 3761
F6 3785
F6 3810
F4 3859
F4 3949 | HAPPY CAMP RANGR STA
HARRIS 7 SSE
HARTSOOK INN
HAYFORK RANGER STA
HIDDEN VALLEY RCH | 1910
470 | SEC
SEC | 27
24
12 | T16N
T05S
T05S
T31N
T01N | ROSE
ROSE
R12W | N
D
R | H
H
M | 39
40
40 | 59
00
33 | 24
48
00 | 123
123
123 | 36
47
10 | 42
30
00 | 000
900 | | 1914
1953
1957
1915
1959 | | 47
23
12
53
53 | | F6 3956
F3 3987
F6 4037-02
F7 4074
F7 4074-01 | HIGH ROCK
HILTS
HOLMES
HONEYDEW 2 WSW
HONEYDEW HUNTER | 2900
150
380 | SEC
SEC
SEC | 23
33
02 | T015
T48N
T01N
T035
T035 | RO7W
RO2E
RO1W | R
C | M
H
H | 42
40
40 | 00
25
14 | 00
06
18 | 122
123
124 | 38
57
09 | 06
00 | 900
900 | | 1960
1939
1954
1953
1955 | | 44
47
12
12 | ### INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65 NORTH COASTAL AREA | | Stetlon | tion
(tag | ç | qië | | Tract | Meridian | • | | | •pnt | | Cooperator | Caaperatar's
Index
Number | • | 0 | Missing | Code | |--|--|------------------------|----------------|---|----------------------|---------|-------------------|-------------------------|----------------------|---------------------------------|----------------|----------------|-------------------|---------------------------------|--------------------------------------|--------|---------|----------------------------| | Number | Name | Elevation
(in fest) | Section | Township | R o o | 40-Acre | Bose & | o Lotitude | | | - Lengitude | N | Coop | Caaperal
Index
Number | Record | Recard | Years 9 | County | | F5 4077
F4 4082
F4 4084
F4 4191
F0 4202 | HONOR CAMP 42
HOOPA
HOOPA 2 SE
HYAMPOM
IDLEWILD HMS | 350
315
1260 | SEC 2
SEC 2 | 31 TO7N
25 TO8N
31 TO8N
25 TO3N
36 T17N | R04E
R05E
R06E | | H 4
H 4
H 4 | 1 0:
1 0:
0 3 | 3 00
2 00
7 00 | 123
123
123 | 40
39
28 | 00 | 900
900
900 | | 1956
1941
1954
1940
1946 | | | 12
12
12
53
08 | | F3 4577
F6 4587
F5 4602
F6 4690
F6 4698 | KLAMATH
KNEELAND 10 SSE
KOPBEL
LAKE MOUNTAIN
LAKE PILLSBURY NO 2 | 2356
150 | SEC 2
SEC 2 | 5 T13N
3 T03N
18 T06N
11 T05S | ROZE
ROZE
ROZE | Р | H 4
H 4
H 4 | 0 38
0 5 | 3 00
2 00
1 00 | 124
123
123
123
122 | 54
57
24 | 00
30 | 900
900 | | 1941
1954
1937
1939
1964 | | | 08
12
12
53
17 | | | LAVA BEDS NAT MON
LAYTONVILLE
LITTLE RIVER
LITTLE SHASTA
LONG BELL STATION | 1640
150
2725 | SEC SEC 2 | 18 T45N
11 T21N
11 T08N
16 T45N
10 T42N | R15W
R01E
R05W | P
C | M 3
H 4
M 4 | 9 4;
1 0;
1 4; | 2 00
L 54
3 00 | 123
124
122 | 29
06
23 | 00
36
00 | 900
000
000 | |
1940
1940
1949
1960
1958 | | 06 | 47
23
12
47
25 | | F5 5244
F1 5505
F6 5676
F6 5711
F6 5713 | MAD RIVER RANGER STA
MEDICINE LAKE
MINA 3 NW
MIRANDA 4 SE
MIRANDA SPENGLER RCH | 6660
2875
263 | SEC 2
SEC 3 | .7 TOTA
.0 T43N
.8 T055
.0 T035
.9 T035 | RO3E
RO7E
RO4E | Α | м 4
Н 4
Н 4 | 1 31
0 00
0 1 | 00 | 123
121
123
123
123 | 37
23
47 | 00
30
00 | 900
000
900 | | 1943
1946
1927
1964
1939 | | | 53
47
53
12
12 | | F2 5783
F2 5785
F1 5941
F4 6032
F6 6050 | MONTAGUE MONTAGUE 3 NE MOUNT HEBRON R S MUMBO BASIN MYERS FLAT | 2640
4250
5700 | SEC :
SEC : | 7 T45N
8 T45N
12 T46N
15 T39N
30 T02S | R05W
R01W
R06W | E | M 4
M 4
M 4 | 1 4 1
1 4 1
1 1 1 | 5 00
7 00
2 00 | 122
122 | 28
00
32 | 00 | 900
900
900 | 045783 | 1888
1948
1942
1946
1950 | | 05 | 47
47
47
53
12 | | F3 6328
F6 6408
F5 6497-01 | MYERS FLAT-CRANE OAK KNOLL RANGER STA OLD HARRIS ORICK 3 NNE ORICK ARCATA REDWOOD | 1963
2225
50 | SEC :
SEC : | 30 TO25
12 T46N
10 TO45
12 T11N | R09W
R05E
R01E | G
K | M 4
H 4
H 4 | 1 50
0 09
1 19 | 00 00 00 24 | 122
123
124 | 51
39
02 | 00
42
30 | 900
000
000 | | 1963
1942
1956
1950
1954 | | | 12
47
12
12 | | | ORICK PRAIPIF CREEK
ORLEANS
PATRICKS PT ST PK
PETROLIA
PETROLIA 4 NW | 403
250
175 | SEC SEC | 2 T11N
31 T11N
26 T09N
3 T025 | ROSE
ROSW
ROSW | L | H 4
H 4
H 4 | 1 10
1 00
0 10 | 8 00
8 12
9 30 | 124 | 32
09
16 | 00
00
48 | 900
804
000 | | 1937
1885
1947
1958
1953 | | | 12
12
12
12
12 | | F6 6851-15
F6 6976
E6 7404
E4 7698
F3 8025 | PHILLIPSVILLE 1SE
PLASKETT
RICHARDSON GROVE
SALYER RANGER STA
SAWYERS BAR R S | 6580
500
623 | SEC :
SEC : | 9 T035
7 T22N
13 T055
14 T06N | RO9W
RO3E
ROSE | Α | M 3
H 4
H 4 | 9 44
0 00
0 5 | 12
2
3 00 | | 51
47
35 | 00 | 000
900
900 | | 1963
1960
1961
1931
1931 | | | 12
11
12
53
47 | | F7 8162
F6 8163 | SCOTIA
SEIAO VALLEY R S
SHELTER COVE
SHERWOOD VALLEY
SMITH RIVER 2 WNW | 1371
55
2170 | SEC
SEC | 7 TO1M
11 T46M
16 T05S
32 T20M
21 T18M | R12W
R01E
R14W | R | M 4
H 4
M 3 | 1 5
0 0
9 3 | 0 36
2
2 36 | 124
123 | 11
04
26 | 42 | 905
900
901 | | 1926
1953
1959
1958
1951 | | | 12
47
12
23
08 | | F3 8346
F6 8490
F4 9024
F1 9053 | SOMESBAR 1W
STANDISH HICKEY PARK
TRINITY DAM VISTA PT
TULELAKE
TULELAKE INSP STN | 850
2500
4035 | SEC (| 04 T11N
13 T23N
16 T34N
06 T47N
31 T44N | R17W
R08W
R05E | F | M 3
M 4
M 4 | 9 5
0 4
1 5 | 2 30
8 00
8 00 | | 43
46
28 | 30
00 | 900
900
900 | 049057 | 1954
1949
1959
1932
1953 | | | 12
23
53
47
25 | | F7 9177
F4 9490
F2 9499
F6 9527
F7 9654 | UPPER MATTOLE WEAVERVILLE RANGER S WEFD FD WEOTT 2SE WHITETHORN | 2050
3593
600 | SEC SEC | 33 TO25
12 T33N
11 T41N
12 TO25 | RIOW
ROSW
ROSE | M
H | M 4
M 4
H 4 | 0 4
1 2
0 1 | 4 00
6 00
8 29 | 123 | 56
23
53 | 00
00
40 | 900
900
000 | | 1886
1869
1957
1961
1962 | | | 12
53
47
12
12 | | F6 9684
F6 9685
F6 9686
F1 9691-02
F2 9866 | WILLITS 1 NE WILLITS HOWARD RS WILLITS NW PAC RR WILLOW CREEK RANCH YREKA | 1925
1365
5200 | SEC (| 17 T18N
15 T17N
18 T18N
16 T46N
27 T45N | R13W
R13W
R11E | L | м 3
м 3
м 4 | 9 2
9 2
1 5 | 1 00 | | 19
21
45 | 06 | 900 | PN9692 | 1950
1935
1911
1960
1871 | | 05 | 23
23
23
25
47 | | F6 9940 | ZENIA 1 SSE | 2880 | SEC | 22 1039 | R06E | G | H 4 | 0 1 | 1 18 | 123 | 28 | 54 | 000 | | 1950 | | | 53 | ## TABLE A-2 PRECIPITATION DATA FOR 1964-65 NORTH COASTAL AREA | Challer | | | | | | Precipi | ration in | ninches | | | | | | |--|---|------------------------------|--------------------------------------|---------------------------|------------------------------|------------------------------|-------------------------------|---|------------------------------|------------------------------|----------------------|-------------------------------|------------------------------| | Station | Season | July | Aug | Sept | Oct | Nov | Oec | Jan | Feb | Mar | Apr | May | June | | SMITH RIVER | | | | | | | | | | | | | | | CRESCENT CITY 1 N CRESCENT CITY 7 ENE CRESCENT CITY 11 E ELK VALLEY FORT DICK | 84.12 | 1.65
1.24 | 0.38
0.00 | 0.50
0.14
T | 1.40
1.60
1.16 | 14.61
18.16 | 33.18
50.24 | 10.97
15.02
20.98
14.73 | | 1.19 | 10.00 | 1.67
1.59 | 0 • 54 | | GASOUET RANGER STA IDLEWILD HMS PATRICKS PT ST PK SMITH RIVER 2 WNW | 99.03
94.27
83.99
91.36 | 0.84
0.55
2.00
4.60 | 0.63
0.14
0.10
0.75 | 0.04 | 0.85 | 16.57 | 47.59
25.30 | 18.87
12.91
14.31
17.70 | 3.31
3.32 | 1.00 | 9.45
11.72 | 1.10 | 0.76 | | LOST RIVER DORRIS INSPECT STA GRASS LAKE HMS LAVA BEDS NAT MON MOUNT HEBRON R S TULELAKE TULELAKE TULELAKE INSP STN | 14.54
22.84
19.53
16.46
14.84 | 0.68
0.34
0.33
0.69 | 0.10
0.18
0.11
0.06 | T
0.07
0.12
0.02 | 0.20
0.09
0.10
0.22 | 4.01
1.23
2.05
1.12 | 10.75
6.15
8.07
5.87 | 2.07
4.78
1.42
2.54 | 0.23
0.10
0.09
0.10 | 0.17
0.03
0.04
0.07 | 2.54
2.69
1.50 | 0.09
1.02
0.20
0.39 | 1.79
3.00
1.24
2.26 | | WILLOW CREEK RANCH | - | 0.18 | 0.46 | 0.00 | 0.70 | 2.23 | 7.27 | 2.33 | 0.60 | 0.04 | 1.59 | 0 • 42 | - | | SHASTA-SCOTT BIG SPRINGS 4 E CALLAHAN RANGER STA ETNA FORI JONES 6 ESE FORT JONES RANGER ST | 12.35
29.33
-
-
24.60 | 0.28
0.62
0.90 | T
0.03
0.07 | 0.11
0.00
0.15 | 0 • 54
0 • 41
0 • 29 | 3.03
4.96
2.59 | 14.63
20.58
10.47 | 4 • 03 | 1.12
0.93
0.75 | 0.07
0.12
0.16 | | 0.15
0.34
0.37 | 1.95
0.42
0.82 | | GAZELLE — EPPERSON
GAZELLE TUCKER
GREENVIEW
LITTLE SHASTA
MONTAGUE | 18.62
19.76
24.89
15.73
15.49 | 0.64
0.06
0.75 | 0.00 | 0.08 | 0.36 | 1.98
2.95
1.59 | 9 • 78
14 • 56
6 • 71 | 3.75 | 0.28 | 0.04
0.00
1.10 | 2.97
1.39
2.21 | 0.30 | 1.08
0.88
0.95 | | MONTAGUE 3 NE
WEED FO
YREKA | -
34.34
23.20 | | | 0.26 | 0.92 | 3.49 | | 5 • 22
3 • 02 | | | | | | | KLAMATH RIVER | | | | | | | | | | | | | | | CECILVILLE 5 SE CLEAR CREEK COPCO DAM NO 1 FOOTHILL SCHOOL FORKS OF SALMON | 71.72
21.22
19.21 | 0.52
0.29 | 0.04
0.00
0.22
0.00
0.00 | 0.23
0.08
0.20 | 0 • 95
0 • 21
0 • 39 | 2.27
1.63 | 10.71 | -
15.71
3.33
1.78 | 0.48 | 0.05 | 2 • 8 4 | -
0.15
0.23
0.15 | 0.73 | | HAPPY CAMP RANGR STA
HILTS
KLAMATH
OAK KNOLL RANGER STA
ORLEANS | 62.44
26.37
-
34.88
62.20 | 0 • 11
1 • 72 | 0.03 | 0.06
0.12
0.05 | 0.38
1.33
0.61 | 2.56
21.11
3.85 | 13.74
30.59
17.71 | 11.36
3.96
-
6.82
11.52 | 1.08 | 1.07
1.92
0.17 | 2.56
8.88
3.53 | 0.52
1.30
0.38 | 0.27
0.53
0.46 | | SAWYERS BAR R S
SEIAD VALLEY R S
SOMESBAR IW | 53.67 | 0.65 | T | 0.01 | 0.57 | 7.65 | 28.11 | 9.51
9.52 | 1.73 | 0.22 | 4.71 | 0 + 2 2 | 0.28 | | TRINITY RIVER | | | | | | | | | | | | | | | TRINITY RIVER BIG BAR RANGER STA BURNT RANCH 1S BURNT RCH HMS COFFEE CREEK RS FOREST GLEN | 45.01
51.60
46.59
59.09
73.89 | 0.16
0.05
0.00 | 0.00
0.00
0.40 | 0.00
0.00
0.10 | 1.42
1.07
4.36 | 9.14
9.32
10.29 | 22.59
22.24
21.37 | 9.54 | 1.04 | 1.20
7.81
1.23 | 5.84
5.64
7.87 | 0 • 0 9
*
0 • 15 | 0.58
0.46
0.14 | | HAYFORK RANGER STA
HIDDEN VALLEY RCH
HOOPA
HOOPA Z SE
HYAMPOM | 38.77
75.49
68.74 | 0.43
0.13
0.05 | T
0.05
0.04 | 0.13
0.01
0.01 | 3.17
0.38
0.68 | 13.19
12.98
13.06 | 31.96
33.88
31.43 | 7.51
16.41
11.63
11.73
9.15 | 1.70
1.72 | 1.83
1.09
0.94 | 6.49
6.19
8.70 | 0 • 0 2
0 • 0 7
0 • 0 4 | 0.63 | #### TABLE A-2 (Continued) #### PRECIPITATION DATA FOR 1964-65 NORTH COASTAL AREA | | | NOKI | H COA | SIAL | AREA | | | | | | | | | |--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|---|---|--------------------------------------|--------------------------------------|--|--------------------------------------|--| | Station | | | | | | Precipit | ation in | inches | | | | | | | Jidiidii | Season | July | Aug | Sept | Oct | Nav | Dec | Jan | Feb | Mar | Apr | May | June | | TRINITY RIVER | | | | | | | | | | | | | | | SALYER RANGER STA
TRINITY DAM VISTA PT
WEAVERVILLE RANGER S | 57.97
41.21
46.02 | 0.37 | | 0.75 | 1.78 | 7.73 | 16.15 | 11.11
5.95
8.46 | 1.10 | 1.13 | 4.86
5.46
4.39 | | 0.62
0.14
0.16 | | MAD RIVER ARCATA A P | 49.07 | 1.03 | 0.35 | 0.04 | 1.97 | 12.80 | 16.52 | 6.94 | 1.46 | 1.17 | 5.83 | 0.50 | 0.46 | | BIG LAGOON
BLUE LAKE
BLUE LAKE REDWOOD CR
FIELDBROOK 4 D
RCM | | 1.36
0.91
0.14 | | 0.18
0.03
0.00 | 2.01
1.28 | 13.87
12.69
9.11 | 20.99 | 10.69
9.12
-
16.30 | 2.53
1.62
1.52 | 1.00
1.40
1.64 | 7.51 | 0.86
0.45
0.29
0.75 | 0.42 | | HONOR CAMP 42
KOR8EL | 84.81 | | | 0.11 | | | | 13 • 17
10 • 45 | | 1.85 | 6.70
5.35 | 0.72 | 1.08 | | LITTLE RIVER MAD RIVER RANGER STA ORICK 3 NNE | 59.68
74.09
69.51 | 1.64 | | 0.12 | 2.55 | 12.99 | 17.12
36.67 | 9.70
11.56
11.50 | 2.28 | 2.26
2.00
0.93 | | 1.04
0.22
1.25 | 0.90
0.37
0.51 | | ORICK ARCATA REDWOOD
ORICK PRAIRIE CREEK | 63.16
66.97 | 1.25
0.85 | | | | | | 10.67
12.37 | | 1.19 | | 1 • 2 6
1 • 2 3 | | | EEL RIVER | | | | | | | | | | | | | | | ADANAC LODGE ALDERPOINT BRANSCOMB 2 NW BRIDGEVILLE 4 NNW BRIDGEVILLE P 0 | 87.33
60.12
100.07
79.86
68.78 | T
0.03
0.10 | | 0.00 | 1.79
3.03
2.83 | 10.82
19.08
16.72 | 26.43
48.07
33.31 | 14.24
12.07
13.99
13.56
13.24 | 1.73
2.94
2.05 | 1.87
3.82
2.11 | 8 • 47
8 • 25 | T
0•30 | 0.23
0.02
0.33
0.59
0.49 | | BULL CREEK
BURLINGTON ST PARK | 71.75 | 0.23 | 0.00 | | | | | 16.99
11.63 | | | | - | 0.19 | | CEDAR CREEK HATCHERY
COVELO
CUMMINGS | - | 0.11 | 0.05 | 0.00 | 2.81
1.05 | 14.55
10.42 | 22.50 | 10.66
15.06 | 1.13 | 2.08
2.95 | 3.43 | 0.00 | | | DOS RIOS
EUREKA W8 CITY
FERNDALE 2NW
FORTUNA
FOX CAMP | 40.62 | 0.06
0.83
0.23
0.26
0.28 | 0.00
0.03
0.22
0.39
0.00 | 0.05 | 1.82
2.59
2.10 | 12.11
11.50
10.49 | 18.55 | 5 • 8 2
-
7 • 40 | - | 1.06 | 6.01 | 0.29 | | | GARBERVILLE GARBERVILLE HMS HARRIS 7 SSE HARISOOK INN HIGH ROCK | 69.30
69.81
80.00
-
70.85 | 0.08 | 0.03 | 0.08 | 3.02
2.42
3.15 | 10.70
13.78
12.51 | 32.12
40.57 | 13.38
11.88
13.32
 | 1.68 | 2.00 | 8 • 2 7
5 • 5 9
— | 0.02 | | | HOLMES KNEELAND 10 SSE LAKE MOUNTAIN LAKE PILLSBURY NO 2 LAYTONVILLE | 74.60
-
-
- | 0.11
0.46
0.13
T | 0.08
0.03
0.00
0.00
0.04 | 0.12 | 1.78
2.16
2.60 | 12.92
11.70 | 32.84
31.87 | 9.83
12.72 | 1.70 | 1.90 | 5 • 47 | | 0.92
0.33
- | | MINA 3 NW
MIRANDA 4 SE | 63.74 | - | _ | _ | _ | _ | _ | 9.69 | 1.60 | 1.70 | 7.80 | 0.00 | - | | MIRANDA SPENGLER RCH
MYERS FLAT - CRANE
OLD HARRIS | 53.84
75.98 | 0.02
0.24
0.18 | 0.00
0.00
0.03 | 0.00 | 2 • 78
3 • 86
2 • 50 | 9.49
12.16
13.88 | 23.55 | 10.60 | 2.32 | 2.48 | 5.34

7.46 | 0 • 00
-
0 • 20 | 0.15 | | PHILLIPSVILLE ISE
RICHARDSON GROVE
SCOTIA
SHERWOOD VALLEY
STANDISH HICKEY PARK | 67.03
84.64
52.84
90.88
83.62 | 0.11
0.00
0.16
0.15
0.04 | 0.00
0.00
0.10
0.04
0.05 | 0.00
0.00
0.03
0.00
0.00 | 2.83
3.25
2.73
2.39
2.81 | 12.22
11.55
9.74
16.77
13.59 | 28.15
39.86
18.37
44.99
40.12 | 11.99
17.17
9.50
12.62
14.87 | 1.62
2.12
1.78
2.69
2.20 | 1.92
2.35
1.20
3.33
2.46 | 7.77
8.01
8.77
7.28
7.01 | 0.20
0.14
0.18
0.13
0.30 | 0 · 22
0 · 19
0 · 28
0 · 19
0 · 17 | | WEOTT 2SE WILLITS 1 NE WILLITS HOWARD RS WILLITS NW PAC RR ZENIA 1 SSE | 70.06
66.15

64.05
76.86 | 0.20
0.15
0.10
0.00
0.33 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.25 | 3.83
1.68
1.81
1.83
3.01 | 12.50
12.78
13.59
12.87
13.76 | 27.16
31.41
26.01
28.65
32.85 | 12.76
10.23
9.69
12.23
12.82 | 2.24
1.92
1.98
0.77
2.34 | 1.85
2.66
2.60
2.53
2.47 | 8 · 89
5 · 17
6 · 57
5 · 14
8 · 51 | 0.07
0.06
0.00
0.03
0.05 | 0.56
0.09
-
0.00
0.37 | | MATTOLE RIVER | | | | | | | | | | | | | | | CAPE RANCH FERNDALE 8 SSW HONEYDEW 2 WSW HONEYDEW HUNTER MANN RANCH | | | | | | | | | | | | | | | PETROLIA PETROLIA 4 NW SHELTER COVE UPPER MATTOLE WHITETHORN | 63.37
68.70
-
81.56
99.31 | 0.59
0.35
0.13
0.18
0.03 | 0.00
0.20
0.00
0.00 | 0.00
0.00
0.00
0.00 | 3.26
4.05
1.95
5.16
4.18 | 16.02
16.20
15.60
16.14
22.99 | 17.77
21.40
18.04
25.88
39.18 | 10.81
9.25
7.58
14.93
13.96 | 2.18
3.05
1.72
2.61
2.76 | 2.19
1.80
2.96
2.19
3.23 | 10.23
10.95
13.99
12.39 | 0.32
0.85
-
0.20
0.25 | 0.00
0.60
 | | | | | | | | | | | | | | | | MENDOCINO COAST TABLE A-3 STORAGE GAGE PRECIPITATION DATA FOR 1964-65 NORTH COASTAL AREA | | • | : | 1964 - 65 Se | ason | |--------------------------------|-----------------------|------------------|---------------------|---------------------------| | Station | : Agency | : Date : Charged | : Date : Measured | : Precipitation in Inches | | Beswick 7 S | DWR Northern District | 7/18/64 | 6/30/65 | 51.41 | | Blue Creek Mountain
Lookout | US Weather Bureau | 8/15/63 | 8/20/64 | 116.45 | | | | 8/20/64 | 8/18/65 | 139.76 | | Boardcamp Mountain | DWR Northern District | 7/30/64 | 6/28/65 | 137.43 | | Bray 10 WSW | DWR Northern District | 7/18/64 | 8/30/65 | 27.92 | | Camp Six Lookout | DWR Northern District | 6/30/64 | 6/29/65 | 119.21 | | Crowder Flat | DWR Northern District | 7/ 8/64 | 6/30/65 | 22.90 | | Gazelle Lookout | DWR Northern District | 9/16/64 | 6/29/65 | 25.33 | | Long Bell Station | DWR Northern District | 7/10/64 | 7/ 1/65 | 34.03 | | Medicine Lake | DWR Northern District | 7/17/64 | 6/30/65 | 56.90 | | Mumbo Basin | DWR Northern District | 7/ 1/64 | 7/ 1/65 | 63.52 | | Plaskett | DWR Northern District | 7/ 3/64 | 7/ 2/65 | 93.25 | | | | | | | #### TABLE A-4 #### TEMPERATURE DATA FOR 1964-65 NORTH COASTAL AREA | | NORTH GOADIAL AREA | | | | | | | | | | | | | | | |------------|----------------------|---|-----------------------------------|---|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Station | | | Temperature in Degrees Fahrenheit | | | | | | | | | | | | | | Number | Nome | | Season | July | Aug | Sept | Oct | Nov | Dec | Jon | Feb | Mar | Apr | Моу | June | | F5-0901 | 8LUE LAKE | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | 55.1 | 79
70.2
62.2
54.3 | 82
71.1
62.7
54.3 | 94
71.7
59.0
46.3 | 82
66.0
56.8
47.6 | 70
59.2
51.8
44.3 | 64
57.1
51.7
46.3 | 66
57.8
50.2
42.5
32 | 67
58.5
50.0
41.6
32 | 76
63.2
52.7
42.2
33 | 72
60.7
53.3
45.9 | 69
63.8
54.4
45.1 | 74
64.4
56.8
49.1 | | F6-1083 | BRIDGEVILLE P 0 | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | - | 97
80.8
67.8
54.9 | 90
78.9
66.6
54.4 | 106
78.8
62.8
46.8 | 94
74.7
60.0
45.3 | 72
57.0
48.6
40.3
27 | 61
53.1
47.6
42.1
29 | 65
55.5
47.6
39.8
32 | 70
60.6
49.2
37.7 | 76
64.9
53.1
41.3 | 84
64.5
54.6
44.8 | - | - | | F6-1181 | BULL CREEK | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | - | 101
84.9
67.7
50.5
38 | 98
84.8
65.5
46.2
42 | - | - | - | ======================================= | 64
53.6
46.0
38.4
32 | 68
57.2
46.0
34.8
28 | 77
62.2
49.8
37.3 | 85
61.5
52.2
42.9
34 | - | - | | F6-1210 | BURLINGTON ST PARK | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | | - | - | - | - | - | -
-
- | 62
53.8
47.3
40.8
33 | 66
58.3
48.8
39.4 | 69
62.5
52.4
42.3
36 | 82
63.1
53.9
44.7
37 | 85
72.4
59.2
46.0
38 | 90
77.6
63.7
49.8
43 | | F4-1215-15 | BURNT RCH HMS | MAXIMUM
AVG.MAX
AVERAGE
AVG.MIN.
MINIMUM | - | 106
87.1
69.2
51.2 | 102
91.5
71.2
50.8
47 | - | - | -
-
-
- | 62 29 | 62 33 | 69 26 | 72
-
-
29 | 86 | 88 34 | 96
81.9
67.9
53.8 | | F6-1608 | CEDAR CREEK HATCHERY | MAXIMUM
AVG&MAX
AVERAGE
AVG&MIN
MINIMUM | | ======================================= | 102
87.0
68.8
50.5
44 | 107
83.1
63.8
44.6
40 | 95
77.5
60.9
44.3
34 | 70
53.8
46.6
39.3
25 | -
-
-
- | - | - | - | - | - | - | | F3-1990 | COPCO DAM NO 1 | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | 54.8 | 107
94.1
75.6
57.0
49 | 105
92.1
73.5
54.9
43 | 93
84.8
66.4
48.0 | 92
77.7
61.6
45.5
32 | 64
51.0
42.0
33.1
20 | 56
43.5
38.4
33.3 | 50
42.5
36.2
29.9
20 | 60
49.4
40.1
30.8
24 | 67
59.0
47.0
34.9
29 | 83
63.6
51.8
40.0 | 89
73.1
58.1
43.1
30 | 95
83.6
66.8
50.0 | | F1-2480 | OORRIS INSPECT STA | MAXIMUM
AVG.MAX
AVERAGE
AVG.MIN
MINIMUM | 46.1 | 94
82.2
63.9
45.6
35 | 92
80.6
61.4
42.3
28 | 82
72.0
53.0
34.0
22 | 80
67.0
49.8
32.7 | 60
46.7
35.4
24.2 | 52
40.7
33.4
26.2
8 | 52
40.0
31.2
22.4 | 60
47.0
35.6
24.1 | 63
53.0
39.3
25.6 | 78
57.4
45.4
33.5
22 | 82
64.1
48.2
32.4
21 | 86
73.0
56.6
40.3
28 | | F5~3041 | FIELDBROOK 4 D RCH | MAXIMUM
AVG.MAX
AVERAGE
AVG.MIN
MINIMUM | - | 80
71.0
61.1
51.2
46 | 85
72.8
61.6
50.4 | 99
73.5
59.8
46.2
41 | 81
68.2
55.6
43.1
33 | 65
54.3
46.7
39.1
27 | 63
51.8
45.6
39.5
24 |
61
50.7
44.1
37.5
28 | 64
54.2
44.6
35.1
27 | 68
58.0
47.6
37.3 | 71
58.2
50.3
42.4
34 | - | 75
63.5
55.5
47.1
40 | | F6-3322-01 | GARBERVILLE HMS | MAXIMUM
AVG.MAX
AVERAGE
AVG.MIN
MINIMUM | 54.8 | 68.4 | 94
83.9
66.8
49.8 | | 58.7 | | 45.6 | 60
52.4
44.8
37.3 | 47.0 | | 84
63.4
53.4
43.3 | 54.3 | 90
69.4
58.2
46.5 | | F 2-3363 | GAZELLE LOOKOUT | MAXIMUM
AVG.MAX
AVERAGE
AVG.MIN
MINIMUM | - | | 92
83.0
68.3
53.6 | - | -
-
- | - | - | - | - | -
- | - | - | -
-
-
- | | F1-3564 | GRASS LAKE HMS | MAXIMUM
AVG.MAX
AVERAGE
AVG.MIN
MINIMUM | | 91
81.1
62.1
43.1
34 | - | | 44.4 | | 58
41.6
31.6
21.6 | | 34.4 | | 38.3 | | | | F4-3949 | HIOOEN VALLEY RCH | MAXIMUM
AVG.MAX
AVERAGE
AVG.MIN
MINIMUM | 68.6
55.0
41.4 | 102
89.5
71.6
53.8
46 | 70.8 | 99
85.4
65.2
44.9 | | 43.3 | | 39.2 | 44.2 | | 51.8 | 88
72.6
56.8
41.1
30 | 96
82.8
65.2
47.7 | | F6-4037-02 | HOLMES | MAXIMUM
AVG.MAX
AVERAGE
AVG.MIN
MINIMUM | | 63.9 | 87
74.8
63.6
52.5 | 98
75.1
61.8
48.6
41 | 91
72.6
59.8
47.0
36 | 48.9 | - | - | - | - | - | - | -
-
-
-
- | #### TABLE A-4 (Continued) #### TEMPERATURE DATA FOR 1964-65 NORTH COASTAL AREA | Station | | | Temperature in Degrees Fahrenheit | | | | | | | | | | | | | |------------|----------------------|---|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---|----------------------------------|--|----------------------------------| | Number | Name | | Seasan | July | Aug | Sept | Oct | Nav | Dec | Jan | Feb | Mar | Apr | May | June | | F5-4077 | HONOR CAMP 42 | MAXIMUM
AYG•MAX•
AVERAGE
AYG•MIN•
MINIMUM | 50.5 | 87
69.7
56.8
48.0 | 88
70.5
58.8
47.0
37 | 96
70.8
57.6
44.3 | 87
69.0
57.2
45.3 | 72
52.0
44.8
37.7
26 | 60
48.2
42.0
35.9
26 | 72
50.8
43.7
36.6
22 | 68
56.0
45.2
34.5
26 | 70
57.8
47.1
36.4 | 72
53.5
46.1
38.7 | 78
60.5
49.6
38.8
28 | 82
65.8
54.7
43.6 | | F0-4202 | IDLEWILD HMS | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | - | 104
90.0
71.0
52.1
42 | 92
86.7
67.7
48.7 | 98
82.8
64.0
45.3 | 90
75.4
59.7
44.0
34 | 64
50•2
43•6
36•9
24 | 58
44.7
42.4
40.2
24 | - | - | ======================================= | = | = | : | | F5-4602 | KORBEL | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | - | 84
72.2
62.2
52.1
43 | 91
75.3
63.0
50.7 | 101
76.6
61.8
47.1 | 85
72.4
59.3
46.2
37 | 66
57.3
49.8
42.4
30 | 65
53.4
47.2
41.1
27 | 66
56.7
48.6
40.6
31 | 69
61.5
47.8
34.1
29 | 76
63.8
52.0
40.1
31 | 78
62.6
53.6
44.6
33 | 75
67.1
55.0
42.8
30 | - | | F2-5763 | MONTAGUE | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | 50.6 | 104
91.0
70.9
50.8
42 | 102
90.6
68.5
46.4
35 | 95
82.9
60.2
37.5 | 91
73.9
53.6
33.2
21 | 64
50.8
38.7
26.6 | 59
44.7
36.4
28.0 | 60
44.4
35.3
26.2 | 64
53.3
37.4
21.6 | 71
61.4
43.4
25.3 | 80
61.9
48.5
35.1
25 | 87
71.8
53.3
34.8
23 | 93
81.4
61.6
41.9
32 | | F6-6408 | OLD HARRIS | MAXIMUM
AVG•MAX•
AVERAGE
AVG•MIN•
MINIMUM | 53.0 | 108
87.7
71.1
54.5
42 | 100
87.5
69.8
52.1 | 108
84.3
66.4
48.6 | 96
77.5
63.1
48.7
36 | 66
53.7
45.8
37.8
28 | 62
47.3
40.6
33.8
18 | 68
48.5
40.8
33.1 | 65
51.8
40.7
29.6
20 | 82
55.6
44.4
33.1
28 | 90
54.9
46.2
37.5
26 | 90
63 • 3
50 • 4
37 • 4
28 | 97
69.1
56.2
43.3
36 | | F3-8083-01 | SEIAD VALLEY R S | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | 54.4 | 107
91.3
72.4
53.5
45 | 106
92.2
70.6
48.9
38 | 102
86.4
63.2
39.9 | 94
79.1
58.7
38.3
28 | 66
49.7
41.4
33.0
22 | 62
45.3
39.3
33.3
20 | 52
41.9
35.8
29.8 | 69
59.2
44.0
28.9 | 79
66.4
48.8
31.1
24 | 86
66.9
53.9
40.9 | 90
75 • 3
58 • 8
42 • 2
30 | 96
83.8
65.6
47.4
39 | | F6-8490 | STANDISM HICKEY PARK | MAXIMUM
AVG.MAX.
AVERAGE
AVG.MIN.
MINIMUM | 53.8 | 98
79.2
65.7
52.2 | 92
79.5
65.6
51.8 | 96
75.8
61.1
46.4 | 81
71.1
58.2
45.2 | 64
53.8
46.6
39.5
26 | 58
49.9
45.2
40.5
30 | 64
51.0
44.4
37.7
28 | 64
55.2
45.0
34.7
32 | 70
58.7
48.6
38.4 | 83
59.3
51.8
44.3 | 82
67•1
55•5
43•8
36 | 85
69.9
58.4
46.9 | | F1-9057 | TULELAKE INSP STN | MAXIMUM
AVG•MAX•
AVERAGE
AVG•MIN•
MINIMUM | - | 96
63.7
64.8
46.0 | 93
83.0
62.4
41.8
32 | 88
74.3
54.2
34.0
26 | 86
70.8
51.8
32.8
22 | 67
44.9
32.6
20.4 | 52
39.7
31.6
23.4 | 55
38.3
29.8
21.2 | 60
46.1
33.2
20.2 | 65
53.1
37.9
22.7 | 75
55.1
43.4
31.6 | 80
63.4
47.2
30.9 | -
-
40.9
30 | ### TABLE A-5 EVAPORATION DATA FOR 1964-65 NORTH COASTAL AREA | NUMBER | STATION NAME | | JUL | AUG | SEP | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUL | |------------|-----------------------------|--|-------|------|------|------|------|-----|-----|------|------|-------|------|-----| | F6-3030 | Ferndale 2 MV | Evop. | 4.42 | 4.79 | 3.77 | 2.45 | 1.08 | - | .70 | - | 2.36 | 2.66 | 4.32 | 4.2 | | | | Wind
Movement | | | | | | | | | | | | | | | | Water Temp
Avg. Mox.
Water Temp | | | | | | | | | | | | | | | | Avg. Min. | | - | | | | | | | | | | | | F3-4581-36 | Klamath Falls Airport | Evap. | 9.51 | 8.95 | 7.10 | 4.16 | - | - | - | - | - | - | 7.65 | 7.2 | | | | Wind
Movement
Water Temp | | | | | | | | | | | | - | | | | Avg. Max.
Water Temp
Avg. Min. | | | | | | | | | | | | | | F6-4698 | Lake Pillsbury No. 2 | Evap. | 9.80 | 9.98 | 6.88 | 4.20 | 1.53 | .62 | .70 | 1.87 | 3.52 | 3.39 | 7.63 | 8,0 | | ro-4090 | hake IIIIsbuty no. 2 | Wind
Mayament | | 7.70 | 0.00 | | 2.73 | .02 | .,, | 2.0 | 3.72 | 3.37 | 1005 | | | | | Water Temp
Avg. Max.
Water Temp
Avg. Min. | ! | F3-8083-01 | Seiad Valley Ranger Station | Evap. | 8.41 | 8.53 | 5.50 | 2.85 | - | - | - | - | - | - | 6.06 | 7.2 | | | | Wind
Mavement
Water Temp | | | | | | | | | | | | | | | | Avg. Max.
Water Temp
Avg. Min. | | | | | | | | | | | | | | F4-9024 | Trinity Dam Vista Point | Evap. | 10.07 | | 9.89 | 6.35 | 3.25 | | | _ | | 2.66 | 7.26 | 8.2 | | 14-9024 | IIIII oy bam visua form | Wind
Movement | | | 7.07 | 0.37 | 31-2 | | | | | | | | | | | Water Temp
Av., Max.
Water Temp
Av., Min | | | | | | | | | | | | | | F1-9053 | Tulelake | - | 0.57 | 8.95 | 7.10 | 4.16 | | | | | | 4.78 | 7.96 | 7.3 | | | Turetake | Evep.
Wind | | 0.7) | 1.10 | 4.10 | | | | | | 7. 10 | 1.50 | 1 | | | | Mayome of
Water Temp
Avp. Mox. | | | | | | | | | | | | | APPENDIX B SURFACE WATER FLOW ### SURFACE WATER FLOW The Surface Water Measurement Program is a long-term, continuing hydrologic data activity of the Department that provides accurate measurements of water stages and corresponding streamflow discharges. In this volume, daily mean discharges are reported in Table B-1 for the eight Department stream gaging stations located in the North Coastal Area. In addition, monthly and annual mean, maximum, and minimum flows are reported for the period October 1, 1964 through September 30, 1965. The flows reported in Table B-2 are miscellaneous measurements collected during the course of the Department's North Coastal Area Investigation. The data shown in Table Nos. B-1 and B-2 have been determined from observations during the current water year by Department personnel. # Definition of Terms The following terms are commonly used: Cubic foot per second is the unit rate of discharge of water. It is a measure of a cubic foot of water passing a given point in one second. Acre-foot is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons. <u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, which is enclosed by a drainage divide. Water year is the 12-month period from October 1 of one year through September 30 of the subsequent year and is normally designated by the calendar year in which it is terminated. ## Methods and Procedures The program incorporates both field and office activities. The field activities include the installation and maintenance of gaging stations as well as the actual measurement of streamflow. An automatic water stage recorder is in operation at all of the Department's stream gaging stations in the North Coastal Area. Measurement procedures which have been employed are consistent with those used by the U. S. Geological Survey. The office work includes the preparation of data for computation by machine methods. This consists of developing a rating curve for each streamflow station from a series of instantaneous discharge measurements and a related formula.
Manual computation of discharge is required when the direct stage-discharge relationship has been destroyed by ice forming on the control or by backwater from a tributary or control structure downstream. When flows at a single station are in excess of 140 percent of the highest measurement on the rating curve, the computed daily mean discharges from the electronic computer are shown as "estimates." Normally, the rating is good where there is a fixed channel and flow regimen at the station. The rating varies where aquatic growth or shifting sands are present. Where the rating is not permanent, more frequent measurements of discharge are necessary to accurately determine the daily mean discharge. ### Accuracy Accuracy of the flow records range between "excellent" (less than 5 percent error) and "good" (less than 10 percent error). The records of monthly and seasonal mean discharge and runoff are generally more accurate than the daily flow records. Four of the eight gaging stations reported in this bulletin are rated as "excellent". These include the gages on the Little Shasta River, Etna Creek, Moffett Creek, and Browns Creek. The remaining four gages on the Shasta River, Weaver Creek, North Fork Trinity River, and Big Creek are rated as "good". # Significant Figures The following are the significant figures used in reporting streamflow data, consistent with the accuracy of measurements obtained: 1. Daily flow - Cubic feet per second 0.0 - 9.9 Tenths 10 - 99 2 Significant figures 100 - above 3 Significant figures 2. Mean flow - Cubic feet per second 0.0 - 99.9 Tenths 100 - 999 3 Significant figures 1000 - above 4 Significant figures The water year totals are reported to a maximum of four significant figures. Locations of individual measurement stations are given in the tables of flow. Locations numbers have been assigned in accordance with the Department's hydrologic procedures. The location number is a six-digit number. The first letter designates the hydrographic area; the first number the river basin, the second number the reach of the stream. The last three numbers are sequence numbers assigned to a specific station. The sequence numbers begin at the downstream end of the reach. The streamflow tables are arranged in a downstream order. Stations on a tributary entering between two main stem stations are listed between those stations and in downstream order. A stream measurement or gaging station normally derives its name from the stream and the nearest post office (e.g., Weaver Creek near Douglas City). Station descriptions and historical data are provided at the bottom of each table of flow. Gage heights are in feet above an assumed "local" datum plane. The locations of the eight surface water measurement stations or gaging stations measured by the Department in the North Coastal Area are shown on Figure B-1. ### INDEX TO GAGING STATIONS - 1 Little Shasta River near Montague (F-2-1300) - 2 Shasta River at Edgewood (F-2-1700) - 3 Etna Creek near Etna (F-2-5620) - 4 Moffett Creek near Fort Jones (F-2-5420) - 5 Browns Creek near Douglas City (F-4-1510) - 6 Weaver Creek near Doublas City (F-4-1540) - 7 North Fork Trinity River at Helena (F-4-2100) - 8 Big Creek near Hayfork (F-4-4500) ### INDEX TO SAMPLING STATIONS - la Shasta River near Yreka - 1b Scott River near Fort Jones - 1c Klamath River above Hamburg Reservoir Site - 1f Klamath River below Iron Gate Dam - 2a Solmon River at Somesbar - 2b Klamath River near Seiad Valley - 2c Klamath River at Orleans - 3 Klamath River near Klamath - 3a Smith River near Crescent City - 3b Redwood Creek at Orick - 4 Trinity River near Hoopa - 4a Trinity River at Lewiston - 4b Trinity River near Burnt Ranch - 5 Eel River near McCann - 5a Van Duzen River near Bridgeville - 5b Outlet Creek near Longvale - 5c Eel River, Middle Fork at Dos Rias - 5d Eel River near Dos Rios - 5e Mill Creek near Covelo - 5f Williams Creek near Covelo - 5g Eel River, Middle Fork at Eel River Ranger Station - 5h Black Butte River near Covelo - 6 Eel River at Scotia - 6a Mad River near Arcata - 7 Eel River, South Fork near Miranda - 7a Mattole River near Petrolia - 7b Bear River near Copetown ### TABLE B-I # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | (| WATER YEAR | STATION NO. | STATION NAME | |---|------------|-------------|--------------------------| | | 1965 | F21700 | SHASTA RIVER AT EDGEWOOD | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DA | |---------|----------|----------|--------|-------|------------|--------|----------------|--------|----------|------|------|-------|---------| | 1 | 8.2* | 46 | 71 | 93 | 127 | 94 | 131 | 175 | 90 | 26 | 11 | 11 | | | 2 | 8.4 | 49 | 60 | 100 | 119 | 90 | 114 | 147 | 82 | 23 | 13 | 12 | | | 3 | 8.9 | 48 | 43 | 111 | 115 | 87 | 79 | 125 | 83 | 20 | 14 | 10 | | | 4 | | 47 | 37 | 92 | 109 | 82 | 72 | 108 | 87 | 20 | 12 | 10 | | | 5 | 11 | 48 | 34 | 568 E | 130 | 84 | 73 | 54 # | 79 | 20 . | 12 + | 10 | | | | • • | | | | _ | | | | | | | | | | 6 | 11 | 50 | 32 | 381 E | 110 | 82 | 88 | 86 | 70 | 19 | 13 | 10 | | | 7 | 11 | 51 | 28 | 213 * | 102 | 80 | 78 | 76 | 74 | 16 | 13 | 8.8 | | | 8 | 13 | 78 | 30 | 148 | 97 | 81 | 86 | 72 | 71 | 15 | 12 | 8.3 | | | 9 | 14 | 55 | 32 | 135 | 94 | 80 | 84 | 72 | 71 | 15 | 9.6 | 19 | | | 10 | 14 | 60 # | 39 | 147 | 86 | 83 | 83 | 71 | 66 | 15 | 9.0 | 8.1 | II " | | 11 | 15 | 40 | 55 | 194 | 87 | 78 | 85 | 73 | 65 | 14 | 9.3 | 8.4 | 1 | | 12 | 12 | 38 | 30 | 138 | 98 | 73 | 76 | 74 | 58 | 15 | 13 | 7.6 | 13 | | 13 | 13 | 31 | 22 | 118 | 113 | 70 | 78 | 70 | 54 | 15 | 13 | 8.0 | 1 | | 14 | 16 | 28 | 22 | 108 | 109 | 67 | 124 | 94 | 73 * | 13 | 13 | 8.1 | 1. | | 15 | 19 | 25 | 24 | 104 | 104 | 67 | 494 E | 106 | 71 | 13 | 12 | 7.4 | 1. | | | - | | | | | | _ | | | | | | ١. | | 16 | 19 | 25 | 20 | 101 | 99 | 66 | 235 | 122 | 54 | 32 | 12 | 8.0 | | | 17 | 20 | 25 | 17 | 98 | 98 | 64 | 156 | 126 | 69 | 70 | 13 | 8.5 | | | 18 | 19 | 24 | 17 | 102 | 98 | 60 * | 219 | 110 | 73 | 38 | 18 | 9.2 | | | 19 | 19 | 24 | 27 | 111 | 96 * | 60 | 252 | 110 | 57 | 21 | 16 | 9.8 | 2 | | 20 | 21 | 22 | 74 | 117 | 95 | 75 | 341 * | 106 | 44 | 17 | 15 | 10 | 1 | | 21 | 24 | 22 | 2720 E | 112 | 96 | 76 | 305 E | 133 | 41 | 15 | 16 | 10 | 2 | | 22 | 26 | 25 | 5420 E | 118 | 94 | 81 | 233 E | 109 | 39 | 14 | 15 | 9.4 | 2 | | 23 | 27 | 25 | 1960 E | 364 E | 92 | 80 | 184 E | 87 | 43 | 14 | 14 | 9.6 | 2 | | 24 | 29 | 28 | 1190 E | 233 | 90 | 79 | 176 E | 79 | 51 | 12 | 13 | 8.7 | 2 | | 25 | 30 | 23 | 616 E | 167 | 93 | 76 | 168 E | 75 | 48 | 12 | 14 | 8.3 | 2 | | 26 | | 18 | 441 E | 152 | 91 | 71 | 160 E | 76 | 53 | 12 | 15 | 8.5 | 2 | | 27 | 31 | | 277 | 138 | | 70 | | 82 | 23 | 10 | 14 | 8.6 | 2 | | 28 | 35
38 | 16
17 | 192 | 129 | 140
101 | 63 | 173 E
184 E | 97 | 42
35 | 9.9 | 13 | 8.4 | 2 | | 29 | | | 151 | 130 | 101 | 52 | 228 | 109 | 32 | 10 | 12 | 9.2 | 2 | | 30 | 42
43 | 16
24 | 127 | 138 | | 49 | 209 | 115 | 25 | 10 | 11 | 8.4 | 3 | | 31 | 43 | 24 | 107 | 136 | | 50 | 209 | 110 | " | 9.6 | 111 | 0.4 | 3 | | | | | | | | | | | | | | | ME | | MEAN | 21.0 | 34.3 | 449 | 161 | 103 | 73.2 | 166 | 98 • 4 | 60.0 | 18.2 | 12.9 | 9.4 | M | | MAX. | 43.0 | 78.0 | 5420 E | 568 E | 140 | 94 • 0 | 494 E | 175 | 90.0 | 70.0 | 18.0 | 19.0 | | | MIN. | 8.2 | 16.0 | 17.0 | 92.0 | 87.0 | 49.0 | 72.0 | 54.0 | 25.0 | 9.6 | 9.0 | 7.4 | M
AC | | AC. FT. | 1294 | 2039 | 27600 | 9909 | 5722 | 4502 | 9854 | 6048 | 3570 | 1122 | 795 | 558 | | ### WATER YEAR SUMMARY E - ESTIMATED NR - NO RECORD DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND * | MEAN | | MAXIMU | M | | | |-----------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 101 | 9600 E | 8.86 | 12 | 22 | 0510 | | | | | | L | | | | MINIM | J M | | | |-----------|----------|-----|-----|------| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 2 • 8 | 1.79 | 5 | 5 | 2240 | | | | | | سا | | | TOTAL | 7 | |---|-----------|---| | Г | ACRE FEET | ı | | | 73010 | , | | | LOCATIO | N | MA | XIMUM DISCH | ARGE | PERIOD (| F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-------------|----------|-------------|-------------|---------------|----|-------------|-------| | LATITUOE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECOR | 0 | OISCHARGE | GAGE HEIGHT | PÉRIOD | | Z ERO
ON | REF. | | | EONGITUDE | M.D.8.&M. | CFS | GAGE HT. | DATE | OBCHARGE | ONLY | FROM | TO | GAGE | DATUM | | 41 28 20 | 122 26 18 | SE20 42N 5W | 9600 E | 8.86 | 12/22/64 | MAR 61-DATE | MAR 61-DATE | 1961 | | 0.00 | LOCAL | Station located on downstream side of Edgewood Road bridge, 1.2 miles north of Edgewood. Tributary to Dwinnell Reservoir. Stage-discharge relationship at times affected by ice. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME F21300 LITTLE SHASTA RIVER NEAR MONTAGUE 1965 | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|--------|-------|-------|-------|-------|-------|--------------|--------------|------|-------|-------|-------|------| | 1 | 4.0 | 5 • 2 | 39 | 44 E | 37 € | 22 E | 29 E | 56 E | 25 | 13 | 7.3 | 5.3 | 1 | | 2 | 3.8 | 6.7 | 35 | 41 E | 35 E | 21 E | 48 E | 53 € | 23 | 12 | 7.1 | 5.4 | 2 | | 3 | 4.0 | 6.1 | 24 | 40 E | 34 E | 20 E | 75 E | 51 E | 23 | 11 | 6.7 | 5.4 | 3 | | 4 | 4.2 | 6.1 | 17 | 44 E | 33 E | 19 E | 87 E | 50 E | 22 | 11 | 6.3 | 5 • 2 | 4 | | 5 | 4.2 | 5.7 | 16 | 89 E | 32 E | 19 E | 99 E | 49 # | 21 | 10 | 6 • 3 | 5.4 | 5 | | 6 | 4.2 | 5.8 | 14 | 108 E | 31 E | 19 E | 97 E | 47 E | 21 | 10 | 5.5* | 5.4 | 6 | | 7 | 4.2 | 6.0 | 15 | 65 E | 31 E | 19 E | 88 E | 44 E | 20 | 9.9 | 5.4 | 4.9 | 7 | | 8 | 4.0 | 8.0 | 55 * | 55 E | 30 E | 19 E | 76 E | 42 E | 19 | 9.6 | 5.2 | 4.8 | 8 | | 9 | 3.8 | 12 | 67 | 52 E | 29 E | 18 E | 76 E | 38 E | 19 | 9.7* | 5 • 2 | 5 • 2 | 9 | | 10 | 3.8 | 8.8 | 111 | 56 E | 29 E | 18 E | 84 E | 36 E | 18 |
9.5 | 5 • 2 | 4.8 | 10 | | 11 | 4.0 | 8.3 | 94 | 122 E | 28 E | 18 E | 89 E | 35 E | 17 | 9.7 | 6.9 | 4.5 | 11 | | 12 | 4.3 | 8.5 | 39 | 85 E | 27 E | 16 E | 84 E | 34 E | 17 | 9.4 | 7.8 | 4.6 | 12 | | 13 | 4 • 2 | 8.8 | 31 | 56 E | 26 E | 18 E | 76 E | 33 E | 17 | 9 • 2 | 6.2 | 4 • 4 | 13 | | 14 | 4.5 | 7.8 | 30 | 52 E | 26 E | 19 E | 72 E | 32 E | 21 | 8.9 | 5.6 | 4.3 | 14 | | 15 | 4 • 4 | 13 | 29 | 50 E | 25 E | 18 E | 74 E | 32 E | 19 | 8.7 | 5.3 | 4 . 4 | 15 | | 16 | 4.5 | 11 | 25 | 48 E | 25 E | 16 E | 86 E | 32 E | 17 | 10 | 5.5 | 4.4 | 16 | | 17 | 4.5 | 9.9 | 26 | 45 E | 24 E | 14 E | 100 E | 31 E | 24 | ii | 5.6 | 5.2 | 17 | | 18 | 4.3 | 10 | 37 | 43 E | 24 E | 13 E | 102 E | 31 E | 19 * | 9.4 | 8.6 | 4.6 | 18 | | 19 | 4.3 | 10 | 28 | 42 E | 24 E | 13 E | 103 E | 31 E
30 E | 16 | 8.9 | 9 • 1 | 5.0 | 19 | | 20 | 4.5 | 11 | 23 | 41 E | 23 E | 12 E | 102 E | 30 E | 14 | 8.5 | 8.0 | 5.2 | 20 | | 21 | 4.5 | 12 | 416 | 41 E | 23 E | 12 E | 99 E | 50 € | 14 | 8.6 | 6.4 | 5.0 | 21 | | 22 | 4.7 | 12 | 794 | 42 E | 23 E | 11 E | 91 E | 30 E | 14 | 8 • 1 | 14 | 4.8 | 22 | | 23 | 4 . 5 | 13 | 355 | 46 E | 22 E | 11 E | 85 E
77 E | 30 E | 12 | 8.1 | 15 | 4.6 | 23 | | 24 | 4 • 6 | 16 | 251 E | 56 E | 22 E | 10 E | 77 E | 30 E | 13 | 7.6 | 7.5 | 5.2 | 24 | | 25 | 4.8 | 23 | 150 E | 52 E | 22 E | 10 E | 74 E | 30 E | 12 | 745 | 8•6 | 4.8 | 25 | | 26 | 4.6 | 18 | 118 E | 46 E | 22 E | 9.6E | 70 E | 29 E | 13 | 7.8 | 6.8 | 4.8 | 26 | | 27 | 4.9 | 15 | 109 E | 41 E | 23 E | 9.3E | 67 E | 28 # | 12 | 7.8 | 6.0 | 4.8 | 27 | | 28 | 4 . 8* | 17 | 81 E | 38 E | 24 E | 9.0E | 64 E | 27 | 12 | 7.4 | 6.0 | 4.8 | 28 | | 29 | 5.2 | 20 | 66 E | 39 E | | 8.7E | 61 E | 27 | 12 | 7.3 | 5 . 8 | 5.1 | 29 | | 30 | 5.2 | 22 | 56 E | 42 E | | 14 E | 58 E | 26 | 13 | 7.3 | 5.7 | 4.6* | | | 31 | 5 • 3 | | 49 # | 39 E | | 21 E | | 26 | | 7.3 | 5•4 | | 31 | | MEAN | 4.4 | 11.2 | 103 | 53.5 | 26.9 | 15.4 | 79.8 | 35.5 | 17.3 | 9.2 | 7.0 | 4.9 | MEA | | MAX. | 5.3 | 23.0 | 794 | 122 E | 37.0E | 22.0E | 103 E | 56.0E | 25.0 | 13.0 | 15.0 | 5.4 | MAX | | MIN. | 3 . 8 | 5 • 2 | 14.0 | 38.0E | 22.0E | 8.7E | 29.0E | 26.0 | 12.0 | 7.3 | 5 • 2 | 4.3 | MIN | | AC. FT. | 271 | 668 | 6347 | 3293 | 1496 | 949 | 4746 | 2180 | 1029 | 564 | 428 | 291 | AC.F | ### WATER YEAR SUMMARY E - ESTIMATEO NR - NO RECORO - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND * | MEAN | | MAXIMU | J M | | | | MINIM | J.M. | | | |--------|-----------|----------|-----|-----|------|-----------|----------|------|-----|------| | CHARGE | DISCHARGE | GAGE HT. | MO. | OAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 30.8 | 5910 | 1066 | 12 | 22 | | 3.8 | 1.62 | 10 | 2 | | | 1 | TOTAL | |---|-----------| | Г | ACRE FEET | | | 22260 | | <u></u> | LOCATIO | И | MA | XIMUM DISCH | IARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|--------------|-------------|----------|---|------------------------------|---------------|------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | LATITODE | LONGITUDE | M.D.8.&M. | CFS GAGE NT. | | DATE | DISCHARGE | ONLY | FROM | то | ON
GAGE | DATUM | | 41 45 11 | 122 17 44 | NW15 45N 4W | 5910 E | 10.66 | 12/22/64 | 28-NOV 51 8
APR 52-APR 55
SEP 56-DATE | 28-NOV 51 8
APR 52-APR 55 | 1956
1965 | 1964 | 0.00 | LOCAL | Station located south of Ball Mountain Road, 12 miles northeast of Montague, 16 miles southwest of Macdoel. Stage-discharge relationship at times affected by ice. Drainage area is 48.2 square miles. 8 - Irrigation season only Station relocated upstream 1/4 mile 5/27/65. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|----------------------| | 1965 | F25620 | ETNA CREEK NEAR ETNA | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|------|------|------|------|------|-----|------|------|------|-------|--------| | 1 | 2.0* | 3.4 | 190 | NR 1 | | 2 | 1.5 | 5.8 | 128 | NR 2 | | 3 | 1.4 | 3.7 | 67 | NP | NR 3 | | ă | 1.5 | 3.1 | 44 | NR 4 | | 5 | 1.4 | 3 • 3 | 33 | NR 5 | | 6 | 1.5 | 3.5 | 27 | NR 6 | | 7 | 1.6 | 3.2 | 24 | NR 7 | | g l | 1.0 | 3 • 8 | 42 | NR 8 | | 9 | 1.8 | 6.1 | NR 9 | | 10 | 1.7 | 6.5* | NR 10 | | 11 | 1.6 | 6.5 | NR | NR | N.R. | NR 11 | | 12 | 1.7 | 8.1 | NR 12 | | 13 | 1.7 | 5.3 | NR 12 | | 14 | 1.9 | 4.5 | NR | NR | NR | NR | NR | NP | NR | NR | NR | NR | 14 | | 15 | 2.0 | 4.2 | NR | NR | NP | NR 15 | | 16 | 2 • 1 | 4.4 | NR NP | NR | 16 | | 17 | 2.1 | 4.4 | NR 17 | | 18 | 2.1 | 4.4 | NR 18 | | 19 | 2.0 | 4.4 | NR 19 | | 20 | 1.9 | 4.4 | NR | NP | NR | NR | NR | NR | NR | NR | No | NR | 20 | | 21 | 2.0 | 4.6 | NR 21 | | 22 | 2.0 | 4.8 | NR 22 | | 23 | 2 • 1 | 5.4 | NR 22 | | 24 | 1.9 | 2.9 | NR 24 | | 25 | 2.1 | 47 | NR 25 | | 26 | 2.4 | 18 | NR | NR. | NR 26 | | 27 | 2.6 | 13 | NR 27 | | 28 | 3.0 | 26 | NR 28 | | 29 | 4.0 | 38 | NR | NR | | NR 29 | | 30 | 3.7 | 90 | NR | NR | | NR 30 | | 31 | 3.2 | | NR | NR | | NR | | NR | | NR | NR | | 31 | | MEAN | 2 • 1 | 12.3 | NR NP | NR | MEAN | | MAX. | 4.0 | 90.0 | NR MAX | | MIN. | 1.4 | 3 • 1 | NR MIN. | | AC. FT. | | 732 | NR AC.FT. | WATER YEAR SUMMARY E - ESTIMATEO NR - NO RECORD - OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND * | MEAN | | MAXIMU | J M | | | MINIM | U M | | | |----------|-----------|----------|---------|----------|-----------|----------|-----|-----|------| | ISCHARGE | DISCHARGE | GAGE HT. | MO. DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | NR | NR | | | | NR | | | 1 | | | | | | | <i>)</i> | | | | | / | | TO | IAI | _ | |------|------|-----------------| | | 176 | | | ACRE | FEET | | | | NR | | | | ACRE | ACRE FEET
NR | | | LOCATION | | | XIMUM DISCH | IARGE | PERIOD O | DATUM OF GAGE | | | | | |--------------------|-----------|------------------|-----------|-------------|--------|----------------|---------------|--------|------|------------|-------| | LATITUDE LONGITUDE | | 1/4 SEC. T. & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.B.&M. | CFS | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | то | GAGE | DATUM | | 41 25 53 | 122 54 57 | NE6 41N 9W | 4040 E | 10.87 | 2/8/60 | SEP 50-JUNE 55 | SEP 50-JUN 55 | 1957 | 1965 | 0.00 | LOCAL | Station located south of Sawyers Bar-Etna Highway, 2.1 miles southwest of Etna. Tributary to Scott River. Stage-discharge relationship at times affected by ice. Flow influenced by upstream diversion dam of Town of Etna. Drainage area is 20.1 square miles. Station destroyea Dec. 1964. ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME F25420 MOFFETT CREEK NEAR FORT JONES 1965 | DAY | ост. | NOV. | DEC. | JAN. | FE8. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|------------|---------------|---------------|---------------|--------------|----------------|--------------|-------------------------|------------|----------------|-------|------| | 1 | 0.3* | 0.7 | 1.7 | 78 | 153 E | 43 | 30 | 38 | 12 | 5.9 | 1.6 | 5.7 | 1 | | 2 | 0.3 | 0.9 | 2.2 | 74 | 136 | 40 | 29 | 38 | 11 | 6.3 | 1.4 | 8.1 | 2 | | 3 | 0.3 | 0.8 | 1.7 | 70 | 122 | 40 # | 27 | 38 | 9.7 | 6.0 | 1.5 | 5.7 | 3 | | 4 | 0.3 | 0.9 | 1.5 | 64 | 110 * | 38 | 26 | 36 | 8.8 | 6.0 | 1.5 | 4.6 | 4 | | 5 | 0.3 | 0.8 | 1.4 | 100 | 103 | 36 | 29 | 35 | 8.6 | 5.6 | 1.3 | 4.1 | 5 | | 6 | 0.3 | 0.8 | 1.3 | 131 | 95 | 35 | 31 | 33 | 9.0 | 4.4 | 1.1* | 3.9 | 6 | | 7 | 0.3 | 0.8 | 1.3 | 109 * | 87 | 34 | 30 | 31 | 13 | 4.2 | 1.1 | 3.5 | 7 | | 8 | 0.4 | 0.9 | 1.4 | 96 | 83 | 33 | 29 | 30 | 10 | 4.0 | 1.7 | 2.8 | 8 | | 9 | 0.5 | 1.4 | 1 • 4 | 88 | 76 | 32 | 29 | 29 | 9.5 | 4.0* | 1.6 | 2.6 | 9 | | 10 | 0.6 | 1.6 | 1.6 | 87 | 70 | 31 | 30 | 27 | 8.6 | 4.0 | 1.1 | 2 • 2 | 10 | | 11 | 0.5 | 1.6 | 1.8 | 180 E | 67 | 31 | 30 | 24 | 7.9 | 3.7 | 1.2 | 2.2 | 31 | | 12 | 0.4 | 1.7 | 1.7 | 192 E | 63 | 31 | 29 | 23 | 7.0 | 3.5 | 1.3 | 2.1 | 12 | | 13 | 0.5 | 1.5 | 1.7 | 173 E | 62 | 30 | 29 | 24 | 7.4 | 3.3 | 1.1 | 2.0 | 13 | | 14 | 0.4 | 1.4 | 1.7 | 158 E | 59 | 29 | 30 | 24 | 9.3* | 3.6 | 1.0 | 1.9 | 14 | | 15 | 0.3 | 1.5 | 1.8 | 145 | 56 | 29 | 32 | 22 | 11 | 3.6 | 1.0 | 1.7* | 15 | | 16 | 0.5 | 1.5 | 1.8 | 145 | 53 | 28 | 39 | 20 | 11 | 4.2 | 0.9 | 1.6 | 16 | | 17 | 0.4 | 1.4 | 1.7 | 141 | 51 | 28 | 40 | 20 | 10 | 3.7 | 1.2 | 1.8 | 17 | | 18 | 0.4 | 1.5 | 1.7 | 139 | 51 | 27 | 46 | 20 | 7.9 | 3 • 6 | 1.9 | 1.7 | 18 | | 19 | 0.4 | 1.5 | 2.0 | 150 E | 50 | 26 | 57 | 19 | 7.4 | 3.7 | 2.1 | 1.6 | 19 | | 20 | 0.4 | 1.5 | 2.3 | 159 E | 48 | 26 | 65 * | 20 * | 6.7 | 3.2 | 2 • 3 | 1.6 | 20 | | 21 | 0.5 | 1.4 | 31 | 153 E | 47 | 25 | 65 | 22 | 6.3 | 3.0 | 2.9 | 1.4 | 21 | | 22 | 0.5 | 1.2 | 455 E | 141 | 47 | 25 | 62 | 22 | 6.1 | 2.9 | 3 • 6 | 1.4 | 22 | | 23 | 0.4 | 1.1* | 487 E | 206 E | 45 | 25 | 58 | 20 | 5.7 | 2.8 | 5+2 | 1.4 | 23 | | 24 | 0.5 | 1.0 | 312 E | 276 E | 43 | 25 | 55 | 18 | 5.5 | 2.5 | 5.5 | 1.3 | 24 | | 25 | 0.5 | 1.0 | 238 E | 217 E | 43 | 25 | 52 | 16 | 6.3 | 2.6 | 4.5 | 1.3 | 25 | | 26 | 0.4 | 1.0 | 225 E | 176 E | 42 | 24 | 51 | 15 | 6.8 | 2.5 | 4.2 | 1.2 | 26 | | 27 | 0.4 | 0.9 | 218 E | 151 E | 52 | 23 | 48 | 14 | 6.8 | 2.4 | 4.0 | 1.4 | 27 | | 26 | 0.5 | 1.0 | 164 E | 136 | 46 | 23 | 45 | 13 | 6.3 | 2 • 3 | 3 • 6 | 1.4 | 28 | | 29 | 0.6 | 1.0 | 126 | 135 | | 23 | 42 | 13 | 5.3 | 2.2 | 3 • 4 | 1.1 | 29 | | 30 | 0.6 | 1.5 | 107 | 159 E | | 23 | 39 | 13 | 5.3 | 2.1 | 2 • 8 | 1.1 | 30 | | 31 | 0.5 | | 86 | 167 E | | 23 | | 12 | | 2.0 | 2.5 | | 31 | | MEAN | 4.0 | | 00.0 | 343 | 70.0 | 20.4 | 40.3 | 22 5 | | 2.7 | 2.3 | | MEA | | MAX. | 0.4 | 1.2 | 80.2
487 E | 142
276 E | 70.0 | 29 • 4 | 40.1
65.0 | 23.5
38.0 | 8.2
13.0 | 3.7 | 2 • 3
5 • 5 | 2.5 | MAX | | MIN. | 0.6 | 1.7
0.7 | 1.3 | 276 E
64.0 | 153 E
42.0 | 43.0 | | | | 6.3 | |
8.1 | MIN | | AC. FT. | 26 | 71 | 4928 | 8719 | 3888 | 23.0
1807 | 26 • 0
2388 | 12.0
1446 | 5 ₆ 3
488 | 2•0
226 | 0•9
139 | 1.1 | AC.F | WATER YEAR SUMMARY E - ESTIMATED NR - NO RECORO - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND * | MEAN | | MAXIMU | M | | = | |-----------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 33.5 | 680 | 5•59 | 12 | 23 | | | \ | $\overline{}$ | MINIMUM | | | | | | | | | | | | | |---|---------------|----------|-----|-----|------|--|--|--|--|--|--|--|--|--| | ٦ | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | | | | | | 0.3 | 2.22 | 10 | 1 | , | | | | | | | | | | | TOTAL | |-----------| | ACRE FEET | | 24270 | | | | | LOCATION | 1 | MAXIMUM DISCHARGE PER | | | | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|-----------------------|----------|----------|------------------------------|------------------------------|---------------|-----|------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | OF RECORD | | 0 | DISCHARGE | GAGE HEIGHT | PER | IOD | ZERO | REF. | | LATITOOL | LONGITUDE | M.O. 8.&M. | CFS | GAGE NT. | DATE | JOSH AND E | OHLY | FROM | TO | GAGE | DATUM | | 41 38 02 | 122 44 50 | NESA 777N 8M | 680 | 5.59 | 12/23/64 | OCT 52-OCT 54
JUN 57-DATE | OCT 52-OCT 54
JUN 57-DATE | 1957 | | 0.00 | LOCAL | Station located 180 feet above Old Fort Jone-Yreka Highway bridge, 5.1 miles northeast of Fort Jones. Tributary to Scott River. Stage-discharge relationship at times affected by ice, upstream diversion with approximate flow of one C.F.S. May thru October. Drainage area is 69.8 square miles. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME F41540 WEAVER CREEK NEAR DOUGLAS CITY 1965 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|--------|--------|-------|------|-------|------|------|-------|-------|-------|----------------| | 1 | 0.4 | 5.9 | 194 | 132 | 169 | 52 | 38 | 79 | 35 | 11 | 3.5 | 2.4 | 1 | | 2 | 0.5 | 10 | 159 | 122 | | 52 | 38 | 73 | 31 * | 9.9 | 2.7 | 2.2 | 2 | | 3 | 0.4 | 7.1 | 81 | 116 | 137 E | 50 | 36 | 68 | 29 | 9.1 | 2.7 | 2.0 | 3 | | 4 | 0.4 | 5.8 | 45 | 98 | 137 E | 49 | 37 | 63 | 29 | 8.7 | 2.4 | 1.9 | 4 | | 5 | 0.5 | 3.2 | 29 | 748 E | 134 # | 48 | 38 | 59 | 29 | 8.3 | 2+3 | 1.9 | 5 | | 6 | 0.6 | 5.1 | 21 | 1010 E | 123 | 48 | 37 | 57 | 27 | 8.0 | 2•2 | 1.6 | 6 | | 7 | 0.7 | 4.9 | 17 | 681 E | 112 | 46 | 38 | 53 | 26 | 6.6 | 2.1 | 1.9 | 7 | | 8 | 0.7 | 7.4 | 28 | 414 E | 106 | 45 | 44 | 52 | 24 | 6 • 2 | 1.6 | 1.8 | 8 | | 9 | 0.8 | 16 | 53 | 310 | 98 | 44 | 45 | 51 | 23 | 6.0 | 1.7 | 1.9 | 9 | | 10 | 0.6 | 33 | 169 | 378 E | 92 | 42 | 44 | 51 | 21 | 6.1 | 1.9 | 1.7 | 10 | | 11 | 0.7 | 43 | 153 | 707 E | 87 | 42 | 42 | 50 | 20 | 6.0 | 2.9 | 1.7 | 11 | | 12 | 0.7 | 48 | 54 | 539 E | 83 | 42 | 41 | 52 | 20 | 6.0 | 4+5 | 1.5 | 12 | | 13 | 1.0* | 27 | 27 | 378 | 80 | 41 | 43 | 52 | 20 | 5.4 | 3.3 | 1.6 | 13 | | 14 | 0.9 | 16 | 18 | 311 | 76 | 39 | 43 | 51 | 23 | 5.6 | 2.5 | 1.5 | 14 | | 15 | 0.8 | 12 | 16 | 336 | 72 | 38 | 63 | 50 | 22 | 5.4* | 2•3 | 1.4 | 15 | | 16 | 1.2 | 10 | 9.8 | 377 | 70 | 37 | 79 | 52 | 20 | 4+7 | 2.0* | 1.3 | 16 | | 17 | 1.3 | 9.9 | 6.9 | 369 | 67 * | 37 | 69 | 52 | 19 | 4.2 | 2.0 | 1.40 | 17 | | 18 | 1.5 | 9.3 | 5.6 | 411 E | 66 | 36 | 274 E | 49 | 18 | 4.2 | 6.6 | 1.5 | 18 | | 19 | 1.7 | 8.6* | 31 | 498 E | 64 | 36 | 351 E | 47 | 16 | 4.2 | 5.1 | 1.6 | 20 | | 20 | 1.9 | 8 • 2 | 94 | 537 E | 63 | 37 | 216 | 46 | 15 | 4.3 | 4.0 | 1.7 | 20 | | 21 | 1.9 | 9.0 | 1620 E | 488 E | 61 | 36 | 186 | 50 | 15 | 4+5 | 3.7 | 1.3 | 21 | | 22 | 1.8 | 11 | 2570 E | 377 | 62 | 35 | 140 * | 45 | 14 | 4.1 | 3.6 | 1.4 | 22 | | 23 | 1.8 | 10 | 1620 E | 914 E | 58 | 35 * | 118 | 40 | 13 | 3.9 | 3.6 | 1.3 | 23 | | 24 | 2.0 | 38 | 1470 E | 588 E | 55 | 34 | 106 | 40 | 13 | 3.4 | 4.1 | 1.2 | 24 | | 25 | 2 • 3 | 98 | 1340 E | 354 | 54 | 34 | 99 | 38 | 13 | 3.3 | 4.6 | 1.3 | 25 | | 26 | 2.7 | 41 | 834 E | 269 | 56 | 39 | 98 | 37 | 13 | 3.4 | 4.1 | 1.5 | 26 | | 27 | 3 • 6 | 36 | 922 E | 226 | 72 | 40 | 96 | 37 | 13 | 3.4 | 3.9 | 1.4 | 27 | | 28 | 5.6 | 218 | 767 E | 197 | 56 | 36 | 99 | 38 | 12 | 3.5 | 3.2 | 1.7 | 28 | | 29 | 8.5 | 116 | 410 E | 184 | | 36 | 94 | 38 | 10 | 3.3 | 2 • 8 | 1.9 | 29 | | 30 | 6.1 | 135 | 249 | 184 | | 40 | 85 | 37 | 11 | 3.2 | 2.5 | 1.8 | 30 | | 31 | 4.3 | | 175 | 161 | | 38 | | 37 | | 3.4 | 2+6 | | | | MEAN | 1.9 | 33.5 | 425 | 401 | 87.6 | 40.8 | 91.3 | 49.8 | 19.8 | 5.5 | 3.1 | 1.6 | MEAN | | MAX. | 8 • 5 | 218 | 2570 E | 1010 E | 169 | 52.0 | 351 E | 79.0 | 35.0 | 11.0 | 6.6 | 2.4 | | | MIN. | 0.4 | 4.9 | 5.6 | 98.0 | 54.0 | 34.0 | 36.0 | 37.0 | 10.0 | 3.2 | 1.7 | 1.2 | MIN.
AC.FT. | | AC. FT. | 115 | 1992 | 26160 | 24660 | 4863 | 2507 | 5433_ | 3062 | 1178 | 336 | 193_ | 98 | Tr.FI | WATER YEAR SUMMARY E - ESTIMATED NR - NO RECORD DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND * | MEAN | | MAXIMU | J M | | _ | | MINIMU | J M | | | |-----------|-----------|----------|-----|-----|------|-----------|----------|-----|-----|--| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | | | 97.5 | 3980 | 12.72 | 12 | 22 | | 0.4 | 5.60 | 10 | 1 | | TOTAL ACRE FEET 70600 | LOCATION MAXIMUM DISCHAR | | | IARGE | PERIOD | OF RECORD | | DATU | M OF GAGE | | | | |--------------------------|------------|------------------|-----------|----------|-----------|-------------|-------------|-----------|----|------|-------| | LATITUDE LONGITUDE | | 1/4 SEC. T. & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | 2011017002 | M.D.B.&M. | CFS | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | то | GAGE | DATUM | | 40 40 13 | 122 56 33 | SE36 33N 10W | 3980 E | 12.72 | 12/22/64 | JAN 57-DATE | JAN 57-DATE | 1957 | | 0.00 | LOCAL | Station located 2.0 mile below State Highway 299 bridge, 1.2 miles north of Douglas City, 4.2 miles south of Weaverville. Tributary to Trinity River. Drainage area is 48.4 square miles. | Revisions:
Maximum Discharge: | Water Year
1959
1960
1961
1962
1963
1964 | Gage Height 9.45 10.37 9.68 9.07 11.40 11.32 | Discharge
in CFS
1750
2300
1900
1550
2920
2860 | |----------------------------------|--|--|---| | Daily Mean: | Date 1/31/61 2/13/62 1/31/63 1/20/64 | Gage Height 8.15 7.80 8.67 8.92 | Discharge
in CFS
992
760
1300
1060 | ### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1965 F41510 BROWNS CREEK NEAR DOUGLAS CITY | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|--------|------|--------|-------|-------|------|-------|------|------|------|-------|-------|-------| | 1 | 3.0 | 34 | 181 | 269 | 376 | 86 | 54 | 131 | 48 | 22 | 12 | 8.9 | 1 | | 2 | 3.0 | 60 | 180 | 258 | 329 | 83 | 58 | 124 | 46 * | 21 | 12 | 9.0* | 2 | | 3 | 3.3 | 30 | 139 | 231 | 288 | 81 | 56 | 119 | 44 | 20 E | 12 | 9.3 | 3 | | 4 | 3.7 | 19 | 106 | 197 | 255 | 78 | 56 | 112 | 41 | 20 E | ii | 9.1 | 4 | | 5 | 2.9 | 16 | 88 | 516 | 244 | 80 | 56 | 107 | 41 | 19 E | ii | 8 • 4 | 5 | | 6 | 3.6 | 14 | 73 | 704 | 216 | 81 | 58 | 103 | 41 | 19 E | 9.5 | 8.0 | 6 | | 7 | 3.6 | 13 | 62 | 595 | 186 | 79 | 56 | 98 | 40 | 18 E | 8.6 | 7.8 | 7 | | 8 | 3.3 | 16 | 57 | 446 | 175 | 76 | 73 | 93 | 39 | 18 E | 9.4 | 8.4 | 8 | | 9 | 3.6 | 35 | 54 | 405 | 160 | 74 | 77 | 89 | 38 | 17 E | 9 • 4 | 8.3 | 9 | | 10 | 4.0 | 81 | 64 | 376 | 146 | 73 | 77 | 87 | 36 | 17 E | 8.7 | 7.3 | 10 | | 11 | 4.4 | 68 | 88 | 423 | 137 | 73 | 75 | 83 | 34 | 17 E | 11 | 7.3 | 11 | | 12 | 4.0 | 101 | 78 | 421 | 131 | 71 | 83 | 81 | 32 | 16 E | 16 | 7.2* | 12 | | 13 | 3.6* | 78 | 70 | 405 | 126 | 68 | 105 | 79 | 34 | 16 E | 13 | 7.3 | 13 | | 14 | 3.4 | 53 | 63 | 385 | 123 | 67 | 208 | 76 | 35 | 15 E | 11 | 7.9 | 14 | | 15 | 4.1 | 39 | 61 | 408 | 116 | 65 | 543 | 73 | 35 | 15 E | 10 | 7.9 | 15 | | 16 | 4+1 | 32 | 54 | 439 | 116 | 63 | 711 | 72 | 33 | 14 E | 11 | 7.4 | 16 | | 17 | 4.6 | 27 | 48 | 449 | 111 * | 63 | 468 | 69 | 33 | 14 E | 11 | 7.2 | | | 18 | 4.5 | 23 | 45 | 484 | 108 | 63 | 612 | 67 | 33 | 13 E | 16 | 7.6 | 18 | | 19 | 4.6 | 21 * | 67 | 545 | 105 | 64 | 733 | 65 | 31 | 12 # | 16 | 7.9 | 20 | | 20 | 4.6 | 20 | 131 | 548 | 102 | 58 | 605 | 65 | 31 | 12 | 13 | 7.6 | 120 | | 21 | 4.6 | 22 | 1180 | 508 | 101 | 50 | 495 | 69 | 28 | 12 | 12 | 7.7 | 21 | | 22 | 4.6 | 27 | 2840 | 456 | 99 | 48 | 397 * | 65 | 27 | 13 | 13 | 7.6 | 22 | | 23 | 4.9 | 25 | 2010 | 741 | 95 | 50 # | 343 | 63 | 27 | 12 | 13 | 6.5 | 23 | | 24 | 5.1 | 37 | 1030 | 966 | 92 | 52 | 285 | 60 | 26 | 12 | 12 | 6.8 | 24 | | 25 | 5.5 | 79 | 759 | 717 | 88 | 50 | 243 | 58 | 25 | 12 | 13 | 7.7 | 25 | | 26 | 5.9 | 77 | 866 | 556 | 86 | 52 | 212 | 55 | 28 | 11 | 12 | 6.0 | 26 | | 27 | 6.3 | 65 | 841 | 466 | 111 | 57 | 189 | 54 | 25 | 11 | 12 | 8 • 2 | 27 | | 28 | 14 | 104 | 640 * | 422 | 91 | 51 | 175 | 51 | 24 | 11 | 11 | 8.8 | 28 | | 29 | 34 | 119 | 500 | 419 | | 49 | 156 | 50 | 23 | 11 | 8+5 | 8.9 | 29 | | 30 | 22 | 129 | 409 | 448 | | 50 | 141 | 50 | 23 | 11 | 9+1 | 8 • 2 | 30 | | 31 | 14 | | 325 | 429 | | 51 | | 49 | | 11 | 9•5 | | - | | MEAN | 6.4 | 48.6 | 423 | 472 | 154 | 64.7 | 247 | 78.0 | 33.4 | 14.9 | 11.6 | 7.9 | MEAI | | MAX. | 34 • 0 | 129 | 2840 | 966 | 376 | 66.0 | 733 | 131 | 48.0 | 22.0 | 18.0 | 9.3 | MIN | | MIN. | 2.9 | 13.0 | 45.0 | 197 | 86.0 | 48.0 | 54.0 | 49.0 | 23.0 | 11.0 | 8.5 | 6.5 | AC.FI | | AC. FT. | 391 | 2904 | 26 000 | 29030 | 8567 | 3979 | 14680 | 4794 | 1985 | 916 | 712 | 472 | | WATER YEAR SUMMARY E - ESTIMATED NR - NO RECORD - OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND * | MEAN | | MAXIMU | J M | | | |-----------
-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 130 | 3790 | 16.29 | 12 | 22 | 0950 | | | MINIM | | | $\overline{}$ | |-----------|----------|-----|-----|---------------| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 2•4 | 7.78 | 10 | 5 | 0820 | TOTAL ACRE FEET 94430 | | LOCATION | N | МА | XIMUM DISCH | IARGE | PERIOD C | DATUM OF GAGE | | | | | |----------|-----------|------------------|--------|-------------|---------|-------------|---------------|------|-----|------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECOR | D | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF. | | LATITODE | ECHOTTODE | M.D.B.&M. | CFS | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | то | GAGE | DATUM | | 40 38 35 | 122 58 46 | SE10 32N 10W | 3950 E | 16.60 | 2/18/58 | JAN 57-DATE | JAN 57-DATE | 1957 | | 0.00 | LOCAL | Station located at private bridge, 2.1 miles west of Douglas City. Tributary to Trinity River. Stage-discharge relationship at times affected by ice. Drainage area is 71.4 square miles. ### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|------------------------------------| | 1965 | F42100 | NORTH FORK TRINITY RIVER AT HELENA | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|---------|-------|-------|------------|--------------|------------|------------|------------|----------|----------|--------| | 1 | 18 | 54 | 1520 | 700 E | 773 | 398 | 268 | 743 | 326 | 135 | 57 | 34 | 1 | | 2 | 16 | 153 | 1130 | 640 E | 688 | 380 | 264 | 663 | 295 * | 153 | 58 | 34 | 2 | | 3 | 18 | 94 | 667 | 580 E | 623 | 361 | 256 | 555 | 334 | 155 | 56 | 32 | a | | 4 | 17 | 67 | 402 | 570 E | 587 | 358 | 253 | 475 | 374 | 158 | 53 | 32 | 1 4 1 | | 5 | 16 | 56 | 319 | 630 E | 609 | 354 | 257 | 425 | 376 | 145 | 50 | 32 | 5 | | 6 | 16 | 50 | 296 | 700 E | 598 | 352 | 253 | 384 # | 308 | 158 | 49 | 31 | 6 7 | | 7 | 17 | 45 | 291 * | 600 E | 550 | 348 | 243 | 368 | 308 | 145 | 49 | 30 | l á l | | 8 | 17 | 54 | 376 | 530 E | 508 | 345 | 232 | 352 | 291 | 144 | 48 | 30 | 0 | | 9 | 17 | 143 * | 636 | 490 E | 483 | 343 | 219 | 357 | 262 | 133 | 48 | 30 | 10 | | 10 | 17 | 178 | 2400 | 430 E | 465 | 345 | 226 | 369 | 288 | 115 | 45 | 29 | 1.0 | | 11 | 17 | 181 | 2010 | 530 E | 451 | 352 | 218 | 393 | 303 | 105 | 47 | 28 4 | 11 | | 12 | 16 | 267 | 856 | 520 E | 445 | 353 * | 215 | 461 | 280 | 101 | 60 | 28 | 12 | | 13 | 16 | 156 | 515 | 500 E | 422 | 341 | 223 * | 491 | 228 | 98
97 | 52
46 | 28
27 | 14 | | 14 | 17 | 111 | 399 | 520 E | 407 | 334 | 234 | 476 | 224
198 | 98 * | 43 | 27 | 15 | | 15 | 19 | 94 | 382 | 580 E | 420 | 328 | 328 | 457 | 198 | 98 * | 4,2 | 21 | | | 16 | 19 | 89 | 329 | 660 E | 436 | 328 | 488 | 480 | 177
171 | 100
101 | 41 * | 27
25 | 16 | | 17 | 19 | 87 | 290 | 720 E | 426 | 329 | 429 | 498 | | 99 | 47 | 27 | 18 | | 18 | 20 | 84 | 261 | 770 E | 450 | 317 | 1140 | 419
409 | 181
197 | 90 | 48 | 27 | 19 | | 19 | 20 | 83 # | 273 | 800 E | 466 | 307
302 | 2940
2110 | 394 | 217 | 81 | 43 | 27 | 20 | | 20 | 19 | 89 | 519 | 780 E | 485 | 302 | 2110 | 394 | | | | | | | 21 | 19 | 95 | 7210 | 700 E | 480 | 301 | 1650 | 358 | 230 | 77 | 42 | 27 | 21 | | 22 | 19 | 110 | 19000 E | 551 | 477 | 309 | 1280 # | 313 | 237 | 75 | 41 | 26 | 22 | | 23 | 19 | 120 | 10000 E | 1290 | 457 | 310 * | 1110 | 291 | 233 | 71 | 40 | 26 4 | | | 24 | 18 | 372 | 6000 E | 2000 | 436 | 308 | 1050 | 274 | 218 | 67 | 40 | 26 | 24 | | 25 | 19 | 375 | 3500 E | 1120 | 405 | 299 | 1020 | 273 | 187 | 66 | 47 | 25 | 25 | | 26 | 20 * | 110 | 3000 E | 687 | 381 | 307 | 1060 | 296 | 155 | 66 | 44 | 25 | 26 | | 27 | 22 | 76 | 2000 E | 501 | 495 | 289 | 1130 | 339 | 141 | 65 | 42 | 25 | 28 | | 28 | 47 | 341 | 1550 E | 435 | 427 | 278 | 1140 | 390 | 139 | 63 | 39 | 25 | 29 | | 29 | 158 | 453 | 1050 E | 481 | | 272 | 993 | 425 | 137 | 60 | 38 | 25 | | | 30 | 83 | 622 | 890 E | 679 | | 272 | 864 | 402 | 145 | 56 | 35 | 25 1 | 30 | | 31 | 53 | | 780 E | 795 | | 271 | | 375 | | 55 | 35 | | | | MEAN | 26.8 | 160 | 2221 | 693 | 495 | 326 | 736 | 416 | 239 | 100 | 45.9 | 28.0 | MEAN | | MAX. | 158 | 622 | 19000 E | 2000 | 773 | 398 | 2940 | 743 | 376 | 158 | 60-0 | 34.0 | MIN. | | MIN. | 16.0 | 45.0 | 261 | 430 E | 381 | 271 | 215 | 273 | 137 | 55.0 | 35.0 | 25.0 | AC.FT. | | AC. FT. | 1646 | 9539 | 136600 | 42620 | 27480 | 20020 | 43820 | 25600 | 14200 | 6173 | 2820 | 1668 | | ### WATER YEAR SUMMARY E - ESTIMATED NR - HO RECORD * - DISCHARGE MEASUREMENT OR OBSERVATION OF HO FLOW MADE THIS DAY # - E AND * | MEAN | | MAXIMU | J M_ | | MINIMUM | | | | | | |-----------|-----------|----------|------|-----|---------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 458 | 35800 | 27.93 | 12 | 22 | | 16 | 6.89 | 10 | 5 | | | | TOTAL | | |---|-----------|--| | | ACRE FEET | | | l | 332100 | | | | LOCATIO | 4 | МА | XIMUM DISCH | ARGE | PERIOD C | DATUM OF GAGE | | | | | |----------|-----------|------------------|-----------|-------------|-----------|-------------|---------------|------|------|------|-------| | | LOUGITUDE | 1/4 SEC. T. & R. | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | LATITUDE | LONGITUDE | M.D.B.&M. | CFS | GAGE HT. | DATE | PIGCITARGE | OHLY | FROM | то | GAGE | DATUM | | 40 46 56 | 123 07 39 | SW21 34N 11W | 35800 | 27.93 | 12/22/64 | JAN 57-DATE | JAN 57-DATE | 1957 | | 0.00 | LOCAL | Station located 1.0 mile above mouth, 0.6 mile north of Helena. Stage-diacharge relationship at times affected by ice. Drainage area is 151 square miles. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | (| WATER YEAR | STATION NO. | STATION NAME | |---|------------|-------------|------------------------| | | 1965 | F44500 | BIG CREEK NEAR HAYFORK | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|--------|-------|-------|-------|-------|------|-------|---------|--------|--------|----------------| | 1 | 0.2 | 6.6 | 109 | 169 | 191 | 50 * | 39 E | 39 | 14 | 3.0 | 0.2E | 0.1E | 1 | | 2 | 0.3 | 14 | 101 | 162 | 173 | 60 | 36 E | 38 | 13 + | 1.9 | 0.2E | 0.1E | 2 | | 3 | 0.4 | 7.9 | 62 | 155 | 162 | 59 | 38 E | 34 | 12 | 2.4 | 0 • 2E | 0.1E | 3 | | 4 | 0.2 | 7. Ž | 42 | 145 | 153 | 58 | 36 E | 33 | 12 | 1.8 | 0.2E | 0.1E | 4 | | 5 | 0.3 | 6.6 | 32 | 221 | 160 * | 59 | 37 E | 32 | 12 | 1.6 | 0.2E | 0.8E | 5 | | 6 | 0.3 | 6.6 | 27 | 303 | 151 | 56 | 37 E | 40 # | 12 | 3.5 | 0 • 2E | 0.6E | 6 | | 7 | 0.3 | 5 • 6 | 24 | 218 | 138 | 56 | 36 E | 38 | 12 | 4.4 | 0 • 2E | 0.1E | 7 | | 8 | 0.4 | 8.2 | 24 | 175 | 128 | 54 | 36 E | 37 | 12 | 4.4 | 0+2E | 0.6E | 8 | | 9 | 0.4 | 12 | 28 | 166 | 120 | 55 | 36 E | 35 | 12 | 3.9 | 0.2E | 0.1E | 9 | | 10 | 0.4 | 14 | 40 | 171 | 112 | 53 | 35 E | 32 | 9.5 | 4.4 | 0+2E | 0.5E | 10 | | 11 | 0.2 | 13 | 61 | 216 | 90 | 53 | 35 E | 28 | 9.1 | 4.4 | 0.3E | 0.1E | 11 | | 12 | 0.3 | 15 | 44 | 214 | 81 | 52 | 34 E | 24 | 9.1 | 3.9 | 0.7E | 1.2E | 12 | | 13 | 0.3 | 12 | 35 | 191 | 65 | 50 | 34 # | 21 | 8.2 | 3.7 | 0 • 3E | 0.15 | 13 | | 14 | 0.3 | 11 | 31 | 184 | 61 | 50 | 35 | 20 | 8 • 6 | 1.9 | 0.6E | 0.7E | 14 | | 15 | 0.5 | 9.1 | 29 | 212 | 58 | 46 | 72 | 18 | 8.6 | 2.0* | 0.2E | 0.4E | 15 | | 16 | 0.3 | 8.6 | 26 | 245 | 54 | 46 | 101 | 18 | 7.9 | 0.5E | 0.3E | 0.6E | 16 | | 17 | 0.6 | 9.5 | 24 | 251 | 53 | 46 | 78 | 19 | 5.9 | 0.2E | 0.1E | 0.3E | 17 | | 18 | 0 • 4 | 9.1 | 23 | 282 | 52 | 44 | 131 | 18 | 6.9 | 0.2E | 1.8E | 1.1E | 18 | | 19 | 0.5 | 9.1* | 30 | 330 | 52 | 44 | 184 | 19 | 4.9 | 0.2E | 1.8E | 3 • QE | 19 | | 20 | 0.0 | 8.6 | 50 | 322 | 52 | 44 E | 138 | 17 | 3.0 | 0 • 2E | 1.5E | 3.9E | 20 | | 21 | 0.0 | 9.5 | 942 E | 287 | 52 | 43 E | 110 | 17 | 2 • 7 | 0 • 2E | 1.6E | 1.5E | 21 | | 22 | 0.0 | 9.9 | 1130 E | 243 | 50 | 43 E | 88 | 17 | 3.0 | 0.2E | 1.2E | 0.2E | 22 | | 23 | 0.0 | 9.9 | 898 E | 369 E | 46 | 42 E | 75 | 16 | 2 • 4 | 0 • 2E | 1.4E | 0.3E | 23 | | 24 | 0.1 | 15 | 636 E | 451 E | 44 | 42 E | 66 | 15 | 2.0 | 0.2E | 0.9E | 0.3E | 24 | | 25 | 0.1 | 32 | 537 E | 303 | 42 | 42 E | 59 | 15 | 3 • 2 | 0+4E | 0•6E | 0 • 3E | 25 | | 26 | 0.4 | 24 | 543 E | 227 | 40 | 41 E | 55 | 14 | 4.7 | 0 • 2E | 0.9E | 0.3E | 26 | | 27 | 0.4 | 20 | 482 E | 193 | 48 | 41 E | 50 | 14 | 1.9 | 0 • 2 E | 0.4E | 0.4E | 27 | | 28 | 2 • 2 | 48 | 368 | 175 | 41 | 40 E | 46 | 14 | 2.0 | 0 • 2E | 0+1E | 0.6E | 28 | | 29 | 5.6 | 50 | 278 | 175 | | 40 E | 44 | 15 | 1.9 | 0 • 2E | 0.4E | 0.5E | 29 | | 30 | 4.9 | 56 | 223 | 204 | | 40 E | 40 | 13 | 2 • 7 | 0+2E | 0 • 4E | 0-4E | 30 | | 31 | 3.9 | | 193 | 210 | | 39 E | | 14 | | 0.2E | 0 • 1E | | 31 | | MEAN | 0.8 | 15.6 | 215 | 231 | 88.2 | 46.1 | 61.5 | 23.4 | 7.3 | 1.6 | 0.6 | 0.6 | MEAN | | MAX. | 5.6 | 56.0 | 1130 E | 451 E | 191 | 60.0 | 184 | 40.0 | 14.0 | 4.4 | 1.8E | 3.9E | MAX. | | MIN. | 0.0 | 9.6 | 23.0 | 145 | 40.0 | 39.0E | 34.0E | 13.0 | 1.9 | 0.2E | 0.1E | 0.1E | MIN.
AC.FT. | | AC. FT. | 48 | 928 | 13230 | 14220 | 4897 | 2955 | 3660 | 1436 | 435 | 101 | 35 | 38 | AC.FL | ### WATER YEAR SUMMARY E - ESTIMATED NR - NO RECORD - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND • | DISCHARGE DISCHARGE GAGE HT. MO. DAY TIME DISCHARGE GAGE HT. M | SCHARGE DI | CHARGE | GAGE HT. | MO | 0.0 | TINAT | | | | | | |--|------------|--------|----------|-------|-----|-------|-----------|----------|-----|-----|------| | 57.9 1 3630 13.75 130 00 0700 00 5 11 13 | | | | ,,,o. | DAT | IIME | DISCHARGE | GAGE HI. | MO. | DAY | TIME | | 7 7 1010 11.77 12 22 0700 3.41 1 | 57.8 | 1610 | 11.75 | 12 | 22 | 0700 | 0.00 | 5.41 | 10 | 20 | | | 1 | TOTAL | | |---|-----------|--| | Γ | ACRE FEET | | | l | 41,980 | | | LOCATION MAXIMUM DISCHARGE | | | | PERIOD (| DATUM OF GAGE | | | | | | | |----------------------------
--|-------------|--------|-----------|---------------|-------------|-------------|------|------|------|-------| | LATITUDE | ATITUDE LONGITUDE 1/4 SEC. T. & R. OF RECORD | |) | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | | LATITODE | LONGITODE | M.D. 8.&M. | CFS | GAGE NT. | DATE | DISCHARGE | OHLY | FROM | TO | GAGE | DATUM | | 40 33 11 | 123 08 35 | SE7 3LN 11W | 1610 E | 11.75 | 12/22/64 | FEB 57-DATE | FEB 57-DATE | 1957 | | 0.00 | LOCAL | Station located 30 feet above Hayfork-Douglas City Highway bridge, 2 miles east of Hayfork. Tributary to South Fork Trinity River via Hayfork Creek. Flow influenced by upstream diversion dam of community of Hayfork. Drainage area is 27.1 square miles. TABLE B-2 STREAMFLOW MEASUREMENTS AT MISCELLANEOUS SITES | | | | Measur | ements | |---|-------------------------|---|--|--| | Stream | Tributary | Location | Date | Discharge | | Eel River, East Branch
South Fork, near Benbow
Resort | South Fork
Eel River | SW ¹ , SE ¹ , Sec. 32,
T4S, R4E, HB&M | 7-16-65
7-24-65
7-26-65
8- 4-65
8-10-65
8-11-65
9- 1-65
9-14-65 | 10.6
9.3
8.7 E
5.8
6.7 E
7.2 E
6.0
6.3
5.1 | | Eel River, South Fork, at French's Resort | Eel River | SE_{4}^{1} , NW_{4}^{1} , Sec. 24, T5S, R3E, HB&M | 8-18-65 | 52.8 * | | Hollow Tree Creek near
Leggett | South Fork
Eel River | $SW_{4}^{\frac{1}{4}}$, $NE_{4}^{\frac{1}{4}}$, Sec. 15, T23N, R17W, MDB&M | 8-18-65
8-27-65
9-28-65 | 3.2
3.0
1.9 | | Indian Creek near Moody | South Fork
Eel River | NE_{4}^{1} , NW_{4}^{1} , Sec. 4, T24N, R18W, MDB&M | 9- 1-65
9-17-65
9-30-65 | 2.3
1.7
1.6 | | Legget Creek near Redway Drainage area =3.8 sq. mi. | South Fork
Eel River | NE_{4}^{1} , SW_{4}^{1} , Sec. 3^{14}
T3S, R3E, HB&M | 8-20-65 | 0.5 | | Redwood Creek near Redway Drainage area = 25.5 sq. mi. | South Fork
Eel River | SW_{4}^{1} , SW_{4}^{1} , Sec. 10, T4S, R3E, HB&M | 7-26-65
7-28-65
8-10-65
8-17-65
8-24-65
8-31-65
8-14-65 | 2.0 E
1.8
0.9
0.9
0.6
0.5
0.3 | | Salmon Creek near Miranda | South Fork
Eel River | SE ¹ / ₄ , SE ¹ / ₄ , Sec. 5,
T3S, R3E, HB&M | 7-23-65
7-28-65
8-10-65
8-17-65
8-31-65
9- 7-65
9-14-65 | 3.0
2.6
2.1
2.2
1.6
1.5
1.0 | E - Estimate ^{* -} Average of two measurements # APPENDIX C GROUND WATER MEASUREMENTS ### GROUND WATER MEASUREMENTS All studies of ground water problems, and plans for the solution of these problems, should be based upon accurate records of ground water elevations obtained over a period of many years. This is true whether the problem is the determination of the safe yield of a ground water basin, the operation of a basin for cyclic storage in conjunction with surface water supplies, or the control of sea water intrusion. The Department began the collection of ground water data in 1930, in conjunction with special investigations of water resources of specific areas, and has gradually developed a continuing program of hydrologic data collection. Through cooperative activities with the federal and local agencies, coordinated and augmented by the Department, the program of ground water level measurements has gradually been expanded to adequately cover the major ground water basins. Within the North Coastal Area, the Department cooperated with the U. S. Geological Survey during the period July 1, 1964 through June 30, 1965 in the systematic observation of ground water levels in the nine major water basins. The field measurements were made by the U. S. Geological Survey; whereas the Department reviewed, processed, and edited the data. Wells are selected for measurement on the basis of geographical density, length of record, frequency of measurement, conformity to water level fluctuations in the basin, and availability of a well log, mineral analyses, and production records. The depth to water in most of the wells is normally a direct measurement made with a tape. However, in some of the deeper wells measurements are made with an air line and gage or an electric sounder. A summary of the average seasonal change in water levels in the nine ground water basins reported in this appendix are given in Table C-1, "Average Ground Water Level Changes in North Coastal Area Basins". The ground water level measurements collected from these North Coastal Area basins during the period July 1, 1964 through June 30, 1965 are included in Table C-2, "Ground Water Levels at Wells". ## Coding Systems Region and Basin Designations. All data presented in this appendix are located within Region 1, a geographic area defined in Section 13040 of the Water Code. The nine ground water basins measured in the program during 1964-65 are shown on Figure C-1. A decimal system of the form 0-00.0 is used for basin numbering. The number to the left of the dash refers to the geographic region and the first two digits of the number on the right of the dash refer to the hydrographic unit, generally designated as a basin, valley, or area. These are followed by a decimal which shows the sub-basin, area, or sub-area within the basin, valley, or area. Two zeros following the decimal denotes that there is no sub-basin, area, or sub-area. An example is given below: Well Numbering System. The well numbering system used in this report is based on the township, range, and section subdivision of the United States Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data is published or filed by the Department. In this report, the number of a well assigned in accordance with this system is referred to as the State Well Number. Within the system each section is divided into 40-acre tracts lettered as follows: | D | С | В | A | |---|---|---|---| | E | F | G | Н | | М | L | K | J | | N | P | Q | R | Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, as well which has the number 16N/1W-2JlH would be in Township 16 North, Range 1 West, Section 2, Humboldt Base and Meridian, and would be further designated as the first well asigned a State Well Number in Tract J. In this report, well numbers are in reference to the Humboldt Base and Meridian (H) or the Mount Diablo Base and Meridian (M). Agency Supplying Data. The code number assigned to the U.S. Geological Survey, the only measuring agency for the wells listed in this appendix, is 5000. Reason for Questionable Measurement. If the water level measurement is of questionable reliability, the reason is indicated by the following code preceding the measurement: | Code | eason | |-------------|---| | 2 Ne 3 Ca 2 | ump operating earby pump operating asing leaking or wet umped recently ir or pressure gage measurement ther echarge operation at or near well il in casing aved or deepened | Reason for No Measurement. If no measurement was made at a well scheduled to be measured, the reason for not making the measurement is indicated by the following code: | Code | Reason | |--------|-----------------------------| | 1 | Pump operating | | 2 | Pump house locked | | 3
4 | Tape hung up | | 4 | Cannot get tape into casing | | 5
6 | Unable to locate well | | 6 | Well has been destroyed | | 7 | Special | | 8 | Casing leaking or wet | | 9 | Temporarily inaccessible | | 0 | Measurement discontinued | TABLE C-1 AVERAGE GROUND WATER LEVEL CHANGES IN NORTH COASTAL AREA BASINS SPRING 1964 - SPRING 1965 | Ground Water Bas | | : Number : of Wells : Considered : in | : Average Ground : Water Level Change : in feet | |--------------------|---------|---------------------------------------|---| | Name : | Number | : Analysis | : | | Smith River Plain | 1-01.00 | 4 | No change | | Butte Valley | 1-03.00 | 5 | +5 | | Shasta Valley | 1-04.00 | 6 | +1 | | Scott River Valley | 1-05.00 | 4 | +8 | | Mad River Valley | 1-08.00 | 2 | No change | | Eel River Valley | 1-10.00 | 3 | +2 | | Round Valley | 1-11.00 | 5 | +1 | | Laytonville Valley | 1-12.00 | 3 | +1 | | Little Lake Valley | 1-13.00 | 3 | No change | | | AGENCY
SUPPLYING
DATA | | ,
,
,
,
,
,
,
,
,
,
,
,
,
, | 2000
2000
2000
2000
2000
2000
2000
200 | 000 | 2000
2000
2000
2000
2000
2000
2000
200 | 2000
2000
2000
2000
2000
2000
2000
200 | |--------------|---|---------------------------------|--
---|-------------------------------|---|---| | | WATER
SURFACE
ELEVATION
IN FEET | | 15.4 | 23.1
28.2
23.1
20.2
23.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2 | 1 % 10 % | 421.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | - 4227.7
+ 4226.0
+ 4226.0
+ 4226.0
+ 4233.8
+ 4233.1
+ 4233.1
+ 4233.1
+ 4227.1 | | | GROUNO SUR-
FACE TO
WATER
SURFACE
IN FEET | | 22.6 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | r
Ĉ | 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | (1)
(1,0% \\ 2,0% \\ 3,0% \\ 4,1\\ 1,0% \\ 1,0% \\ 1,\\ 1,0% \\ 1,\\ 1,\\ 1,\\ 1,\\ 1,\\ 1,\\ 1,\\ | | | DATE | | 7-15-64 | 9-16-64
10-14-64
11-18-64
12-16-64
1-00-65
2-17-65
3-17-65
4-15-65 | 6 | 8-7-10-04
9-17-04
10-15-04
11-19-04
11-19-04
1-18-05
1-18-05
1-16-05
1-16-05
6-17-05 | 7-16-64
8-21-64
9-17-64
10-15-64
11-19-64
12-17-64
12-18-65
1-18-65
1-16-65
6-17-65 | | 7555 | GROUND
SURFACE
ELEVATION
IN FEET | 1-01.00 | 38.0 | | | 4.242.4
4.242.4 | 1,256.2 | | רב אברט או א | STATE WELL
NUMBER | SMITH RIVER PLAIN | 18N/01W-26F01 H | | BUTTE VALLEY 1-03.00 | 46N/Ole-ognol M | 46N/02W-25R02 M | | WAIER | AGENCY
SUPPLYING
DATA | | |
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000 | 2000 | 7000
7000
7000
7000
7000
7000
7000
700 | 2000
2000
2000
2000
2000
2000
2000
200 | | OOND | WATER
SURFACE
ELEVATION
IN FEET | | | 108.6
108.0
108.0
106.4
106.7
106.7
111.5
111.3 | 109.6 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 9.8 - 1.44 - 1.8444 - 0.44 - 0 | | GRO | GROUND SUR-
FACE TO
WATER
SURFACE | 00.0 | | 18.00
20.00
20.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 | 27.77 | 29.29.29.29.29.29.29.29.29.29.29.29.29.2 |
28.00
20.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | | | DATE | MODERN COASTIAL, REGION 1-00.00 | | 7-15-64
8-20-64
9-16-64
10-14-64
11-16-64
12-16-64
1-00-65
3-17-65 | 4-15-65
5-19-65
6-16-65 | 7-15-64
8-20-64
9-16-64
110-14-64
11-18-64
1-16-64
1-10-65
1-17-65 | 7-15-64
8-20-64
10-14-64
11-13-64
12-16-64
12-16-64
1-00-65
8-17-65
8-17-65
8-17-65 | | | GROUND
SURFACE
EL EVATION | APRACY HWGOW | 00 10-1 | 127.0 | | O*84 | 31.0 | | | STATE WELL
NUMBER | | MT A TOT CONTINUES AT A TANA | SMITH RIVER PLAIN
16N/OIW-O2JOL H | | 16N/OIW-17KOl H | 17v/otw-ozpot H | TABLE C-2 (Continued) | AGENCY
SUPPLYING
DATA | | 20000000000000000000000000000000000000 | 2000 000 000 000 000 000 000 000 000 00 | 2000
2000
2000
2000
2000
2000
2000
200 | |---|-----------------------|---|---|--| | WATER
SURFACE
ELEVATION
IN FEET | | 88888888888
5588888888
55888
5588888888 | 8886.5.66
8886.5.66
8886.5.66
8886.6.66
8886.6.66
8886.6.66
8886.6.66
8886.6.66
8886.6.66
8886.6.66
8886.6.66
8886.6.66 | 2638.0
2647.0
2656.6
2660.8
2661.4 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | |
ݥݒݭݖݕݦݖݖݦݦݷݭݭ
ݷݞݸݞݾݾݖݨݭݥݨݽ | | | | DATE | | 7-16-64
9-17-64
10-17-64
11-19-64
12-17-64
12-17-64
12-17-64
1-21-65
3-18-65
4-16-65
6-17-65 | 7-16-64
8-21-64
9-17-64
10-15-64
11-19-64
12-17-64
1-12-65
1-18-65
1-16-65
6-17-65 | 7-16-6
8-21-64
9-17-64
10-15-64
11-19-64
1-13-65
8-18-65
1-16-65
1-16-65
1-16-65
1-16-65
1-16-65 | | GRDUND
SURFACE
ELEVATION
IN FEET | | 2882°0 | 2835.0 | 2665.0 | | STATE WELL
NUMBER | SHASTA VATIEY 1-04.00 | | 42N/06W-10JO1 M | 43N/06w-22A01 M | | AGENCY
SUPPLYING
DATA | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | WATER
SURFACE
ELEVATION
IN FEET | | 4221.3
4220.5
4220.5
4220.5
4225.2
4225.2
4225.2
4223.5
4223.5 | 1,222.7
1,222.0
1,222.0
1,221.0
1,221.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225.0
1,225. | 6225.6
6223.6
6223.6
6223.6
6223.6
6233.6
6236.5
6236.5
6236.9
6236.9 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | | 4 6 6 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0111111
7.0.4.7.6.7.7.8888
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 81 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | DATE | | 7-16-64
8-21-64
9-17-64
10-15-64
11-19-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17-64
12-17- | 7-16-64
8-21-64
9-17-64
10-15-64
11-19-64
11-19-64
11-20-65
2-18-65
3-18-65
3-18-65
5-20-65
6-17-65 | 7-16-04
8-21-04
10-17-04
11-19-04
11-19-04
12-17-04
1-18-65
1-16-65
1-16-65
1-16-65
1-16-65
1-16-65 | | GROUND
SURFACE
ELEVATION
IN FEET | 8 | ^{1,} 233.7 | 4.233. ⁴ | 5*445.4 | | STATE WELL
NUMBER | BUTTE VALLEY 1-03.00 | м_14BO1 м | 47x/олw-27вол м | 48n/olw-26nol m | |
 | , | | | | |---|-----------------------|---|---|---| | AGENCY
SUPPLYING
DATA | | 800000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | | WATER
SURFACE
ELEVATION
IN FEET | | 2800.3
2792.4
2788.2
2783.6
2777.3
2816.9
2811.7
2799.0
2803.7 | 2926.8
2922.8
2922.6
2920.6
2923.1
2928.2
2928.7
2925.7
2925.7
2926.9 | 2729.8
 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | (1) %25.7
%25.7
%25.3
%25.3
%3.3
%3.3
%3.3
%3.3
%3.3
%3.3
%3.3
% | wr-m vo u u u u u u u u u u u u u u u u u u | 0.11
0.00
0.00
0.14
0.00
0.00
0.00
0.00 | | DATE | | 2-14-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 2-1-6-4-6-4-4-6-4-4-6-4-4-4-4-4-4-4-4-4-4 | 2-1-6-64
10-15-64
11-19-64
12-17-64
12-17-64
12-17-64
13-18-65
14-16-65
14-16-65
14-16-65
14-16-65
16-65
16-65 | | GRDUND
SURFACE
ELEVATION
IN FEET | 1-05.00 | 2836.0 | 2930.0 | 2735.0 | | STATE WELL
NUMBER | SCOIT RIVER VALLEY | 42N/09W - 08С3 м | 42N/09W-27NOL M | 4.3N/09W-24F01 M | | AGENCY
SUPPLYING
DATA | | 2000
2000
2000
2000
2000
2000
2000
200 | 00000000000000000000000000000000000000 | 200000000000000000000000000000000000000 | | WATER
SURFACE
ELEVATION
IN FEET | | - 2612.2
2612.7
2610.4
2609.3
2609.3
2609.5
2609.5 | 2615.6
2616.2
2616.2
2615.0
2615.0
2615.0
2615.0
2615.0
2615.0
2615.0 | 2518.6
2519.1
2510.2
2510.2
2517.2
2518.9
2518.9
2520.3
2520.9
2520.9
2520.9 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | | (1)
(2)
(2)
(3)
(3)
(4)
(4)
(5)
(5)
(7)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1 | 48.000000000000000000000000000000000000 | 100 1 100 100 100 100 100 100 100 100 1 | | DATE | | 7-16-64
8-21-64
9-17-64
10-15-64
11-19-64
12-17-64
12-17-64
12-17-64
1-21-65
2-18-65
4-16-65
6-17-65 | 7-17-64
8-21-64
10-15-64
11-15-64
11-17-64
12-17-64
12-17-64
1-21-65
3-18-65
3-18-65
4-16-65
6-17-65 |
7-16-64
8-21-64
9-17-64
11-19-64
12-17-64
12-17-64
1-19-65
1-19-65
1-10-65
1-10-65
1-10-65
1-10-65
1-10-65
1-10-65 | | GROUND
SURFACE
ELEVATION
IN FEET | 00.1 | 2637.0 | 2635.0 | 2538.0 | | STATE WELL
NUMBER | SHASTA VALLEY 1-04.00 | ¼¼И/о5W−3¼НО1 М | 45N/05W-29BO1 M | 45N/06W-19E01 M | TABLE C-2 (Continued) | AGENCY
SUPPLYING
DATA | | 2000
2000
2000
2000
2000
2000
2000
200 | 000 | 2000
2000
2000
2000
2000
2000
2000
200 | 22000
22000
22000
22000
22000 | 00000 | |---|--------------------|--|------------------|---|---|--| | WATER
SURFACE
ELEVATION
IN FEET | | 444884 - 888388
640670 7550 | | 44408 8882
54660 44646 | | 4.04.00
4.04.00 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | | 99 88888999999999999999999999999999999 | 34.5 | | 0 0 0 0 0 F W 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 W W W F | | DATE | | 7-15-64
8-20-64
10-14-64
11-18-64
1-00-65
1-00-65
1-17-65
1-17-65
1-15-65
1-15-65 | 7-15-64 | 8-20-4
10-1-6-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 | 7-15-64
8-20-64
9-16-64
10-14-64
11-18-64
12-16-64
12-16-64 | 2-17-65
3-17-65
4-15-65
6-16-65 | | GROUND
SURFACE
ELEVATION
IN FEET | 1-10.00 | 5 ⁴ €.0 | 0.09 | | 900 | | | STATE WELL
NUMBER | EEL RIVER VALLEY | O3W/O1W-18DO1 H | O3N/OIW-34JO1 H | | 03N/02W-26R01 H | | | AGENCY
SUPPLYING
DATA | | 00000000000000000000000000000000000000 | | 20000000000000000000000000000000000000 | 2000
2000
2000
2000
2000 | 000000000000000000000000000000000000000 | | WATER
SURFACE
ELEVATION
IN FEET | | 2703.0
2696.8
2688.2
2688.2
2684.9
2703.1
2703.1
2703.1
2705.2 | | 140.33
135.81
135.53
145.1
147.9
147.9 | 13.8
13.8
10.0
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | 17.7 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | | 8 0 4 4 4 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 | | 10,
17, 70, 70, 70, 70, 70, 70, 70, 70, 70, 7 | ره ۱۱۵۹
نا مرتنمور
نا مرتنمور | -0.5.5.5.F
-0.5.5.5.F | | DATE | | 2-16-64
10-15-64
11-19-64
11-19-64
11-17-64
11-17-64
11-17-64
11-18-65
18-65
18-65
18-65
18-65
18-65
18-65
18-65 | | | 7-17-64
8-20-64
10-14-64
117-64 | 12-10-04
1-00-65
2-17-65
4-15-65
6-16-65 | | GROUND
SURFACE
ELEVATION
IN FEET | 1-05.00 | 2711.0 | 1-08.00 | 151.0 | 25.0 | | | STATE WELL
NUMBER | SCOIT RIVER VALLEY | 44N/09W-28PO1 M | MAD RIVER VALLEY | 06N/01E-06H01 H | 06м/олв-29гол н | | | AGENCY
SUPPLYING
DATA | | 00000000000000000000000000000000000000 | 2000 000 000 000 000 000 000 000 000 00 | 00000000000000000000000000000000000000 | |---|----------------------|---|---|---| | WATER
SURFACE
ELEVATION
IN FEET | | 1386.3
13882.3
13882.3
1389.5
1389.5
1398.5
1398.5
1398.5 | 1392.6
1388.6
1384.7
1387.3
1397.3
1400.1
1399.4
1399.4 | 1669.8
1670.3
1670.3
1674.3
1682.9
1682.9
1682.0
1682.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | 28.88.89.99.05.6.89.99.05.09.05.09.09.09.09.09.09.09.09.09.09.09.09.09. | 448.004
47.6007
40007
40000
40000 |
181
1777
1377
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
100,00
10 | | DATE | | 7-14-64
8-19-64
10-13-64
11-17-64
11-17-64
11-17-64
1-00-65
2-17-65
3-17-65
4-15-65
6-15-65 | 7-14-64
8-19-64
19-15-64
11-13-64
11-13-64
12-16-65
1-15-65
1-15-65
1-15-65
1-15-65
1-15-65 | 7-14-64
9-19-64
9-19-64
10-14-64
11-18-64
11-18-64
1-19-65
1-17-65
1-17-65
1-17-65
1-17-65 | | GROUND
SURFACE
ELEVATION
IN FEET | 8 | 1409.5 | 1403.0 | 1-12.00 | | STATE WELL
NUMBER | ROUND VALLEY 1-11.00 | 23N/1.3W-36GO3 M | 23N/13W-36фол м | LAYPONVILLE VALLEY
21N/14W-30M01 M | | AGENCY
SUPPLYING
DATA | | 2000
2000
2000
2000
2000
2000
2000
200 | 7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000 | 7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000
7,000 | | WATER
SURFACE
ELEVATION
IN FEET | | 1337.2
1336.7
1335.2
1344.7
1344.7
1344.6
1344.6 | 1382.9
1377.3
1377.3
1377.3
1377.3
1370.5
1392.5
1392.5
1392.0 |
1380.1
1380.1
1384.0
1391.7
1396.7
1397.2
1394.4 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 17.1
28.20.1
28.50.1
2.0.5
4.6
6.5
6.5
6.5
10.0 | | | DATE | | 7-14-64
8-19-64
9-15-64
10-13-64
11-17-64
12-16-64
1-00-65
2-16-65
3-17-65
4-15-65
6-15-65 | 7-14-64
8-19-64
10-13-64
11-17-3-64
11-17-64
12-16-65
3-17-65
4-17-65
6-18-65 | 7-114-64
8-19-64
19-15-64
11-17-64
11-17-64
12-16-65
2-16-65
7-18-65
6-15-65 | | GROUND
SURFACE
ELEVATION
IN FEET | 00 | 1351.0 | 1400.0 | 1388.5 | | | 1-11,00 | × | 22N/l3w-l2ROl m | 23V/12W-31NO1 M | TABLE C-2 (Continued) | | AGENCY
SUPPLYING
DATA | | 000000000000000000000000000000000000000 | 2000
2000
2000
2000
2000
2000
2000
200 | | | |--|---|--------------------|--|--|--------------------|---| | | WATER
SURFACE
ELEVATION
IN FEET | | 1355.0
1355.0
1352.3
1352.3
1352.3
1363.0
1363.0
1363.0
1363.0 |
1338.1
1338.1
1338.0
134.0
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134.3
134 | | | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | 000000000000000000000000000000000000000 | %%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% | | | | | DATE | | 2-1-4-6-6-1-1-4-6-6-1-1-4-6-6-1-6-6-1-4-6-6-1- | 7-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 | | | | | GROUND
SURFACE
ELEVATION
IN FEET | 1-13.00 | 1370.0 | 1365.0 | | | | | STATE WELL
NUMBER | LITTLE LAKE VALLEY | 18N/13W-17JO1 M | 18N/13W-18EO1 M | | | | | AGENCY
SUPPLYING
DATA | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | 00000000000000000000000000000000000000 | | | WATER
SURFACE
ELEVATION
IN FEET | | 1614.4
1661.3
1612.2
1612.2
1612.3
1621.3
1621.3
1621.3
1621.3
1621.3
1621.3
1621.3
1621.3 | 1645.5
1645.1
1648.1
1659.1
1659.2
1650.5
1650.5
1649.7 | | 1332.6
1335.4
1335.4
1339.9
1339.6
1337.1 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | (1)
(1)
(1)
(1)
(1)
(1)
(1)
(1) | | | DATE | | 7-44-64
8-19-64
11-18-64
11-18-64
1-18-64
1-18-64
1-18-65
1-18-65
1-18-65
1-18-65
1-18-65
1-18-65 | 7-14-64
10-14-64
11-14-64
11-16-64
11-16-64
11-16-64
11-16-65
11-16-65
11-16-65
11-16-65
11-16-65 | | 7-24-6;
8-19-6;
10-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13-6;
11-13 | | | GROUND
SURFACE
ELEVATION
IN FEET | 1-12.00 | 1630.0 | 1653.0 | 1-13.00 | 1340.0 | | | STATE WELL
NUMBER | LAYTONVILLE VALLEY | 21N/15W-12MO2 M | 21n/15w-24aol m | LITTLE LAKE VALLEY | 18 1/ 13W-081O1 M | # APPENDIX D SURFACE WATER QUALITY ### SURFACE WATER QUALITY The Surface Water Quality Data Program provides basic information on the quality characteristics of the State's surface waters. Data presented in this appendix are measured values of the chemical and physical characteristics of surface waters in the North Coastal Area, as shown on the "Area Orientation Map". The Surface Water Quality Data Program is performed in cooperation with local and other state and federal agencies. All data presented in this volume are within the North Coastal Water Quality Control Region (No.
1) excluding the Russian River drainage basin and the area along the coast south of the Mattole River drainage. Figure B-1 in Appendix B shows the location of surface water sampling stations for the 1964-65 water year. Surface water quality samples are normally collected at or near existing stream gaging stations. The Surface Water Quality Data Program consists of selecting locations to be sampled, collection of samples by Department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings. Except where noted, tabulated values for temperature and dissolved oxygen are those measured in the field at the time of sampling. Comments on local conditions are noted in the field books but are not included in the tabulation. Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and temperature in degrees Fahrenheit. Laboratory analyses of surface water samples were performed by the U.S. Geological Survey (USGS) in accordance with "Methods for Collection and Analysis of Water Samples", Water-Supply Paper 1454. Analysis of surface water samples for trace elements was performed by spectrograph by the U. S. Geological Survey and is reported in parts per billion. Bacteriologic determinations were made by the California Department of Public Health in Berkeley, and are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample. In view of the rapidity and frequency of change in the density of coliform organisms, frequent and lengthy sampling is necessary before a truly reliable evaluation can be made. ## TABLE D-I SAMPLING STATION DATA AND INDEX ### NORTH COASTAL AREA | Station | Statian
Number | Location | Period b
of
Record | Frequency c
of
Sampling | Sompled ^d
by | Analysis
an
page | |--|-------------------|-------------|--------------------------|-------------------------------|----------------------------|------------------------| | Bear River near Capetown | 76 | 01W-03W-13* | MAY 64 | М | DWR | 54 | | Black Butte River near Covelo | 5h | 23N-11W-28 | NOV 64 | М | DWR | 55 | | Eel River near Dos Rios | 5d | 21N-13W-31 | APR 58 | M | DWR | 56 & 81 | | Eel River near McCann | 5 | 025-03E-04* | APR 51 | М | DWR | 57 | | Eel River, Middle Fork at Dos Rios | 5e | 21N-13W-06 | APR 58 | М | DWR | 58 & 81 | | Eel River, Middle Fork at Eel Ranger Station | 5g | 23N-11W-28 | FEB 65 | М | DWR | 5 9 | | Eel River at Scotia | 6 | 02N-01E-31* | APR 51 | М | DWR | 60 & 81 | | Eel River, South Fork near Miranda | 7 | 03S-04E-30* | APR 51 | М | DWR | 61 | | Klamath River above Hamburg Reservoir Site | le | 46N-10W-14 | DEC 58 | М | DWR | 62 | | Klamath River below Iron Gate Dam | lf | 47N-05W-17 | DEC 61 | М | DWR | 63 & 81 | | Klamath River near Klamath | 3 | 13N-01E-24* | APR 51 | М | DWR | 64 & 81 | | Klamath River at Orleans | 2c | 11N-06E-31* | JAN 64 | М | DWR | 65 & 81 | | Klamath River near Seiad Valley | 2b | 46N-12W-03 | DEC 58 | М | DWR | 66 & 81 | | Mad River near Arcata | 6a | 06N-01E-15* | NOV 58 | М | DWR | 67 & 81 | | Mattole River near Petrolia | 7a | 025-02W-11* | JAN 59 | М | DWR | 68 | | Mill Creek near Covelo | 5e | 22N-12W-22 | FEB 65 | М | DWR | 69 | | Outlet Creek near Longvale | 570 | 20N-14W-01 | MAY 58 | М | DWR | 70 & 81 | | Redwood Creek at Orick | 3b | 10N-Ole-O4* | NOV 58 | М | DWR | 71 | | Salmon River at Somesbar | 2a | 11N-06E-02* | NOV 58 | S | DWR | 72 | | Scott River near Fort Jones | 16 | 44N-10W-29 | DEC 58 | М | DWR | 73 | | Shasta River near Yreka | la | 46N-07W-24 | DEC 58 | М | DWR | 7 ¹ 4 | | Smith River near Crescent City | 3a | 16N-01E-10* | APR 51 | М | DWR | 75 | | Trinity River near Burnt Ranch | 4ъ | 05N-07E-19* | APR 58 | М | DWR | 76 | | Trinity River near Hoopa | 4 | 08N-05E-31* | APR 51 | М | DWR | 77 & 81 | | Trinity River at Lewiston | la | 33N-08W-17 | APR 51 | М | DWR | 78 | | Van Duzen River near Bridgeville | 5a | OLN-03W-17* | APR 58 | М | DWR | 79 | | Williams Creek near Covelo | 5f | 23N-12W-24 | FEB 65 | М | DWR | 80 | | | | | | | | | a Except as indicated below location is referenced to Mt. Diablo Base and Meridian *Humboldt Base and Meridian b Beginning of record c M-Monthly S-Semiannually d California Department of Water Resources (DWR) ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 BEAR RIVER NEAR CAPETOWN (STA. 70) | | Anolyzed
by i | uses | | | | | | | | | | | | | |---|--|--------------|-------------|--------------|------------------------------|-------------|---|-----------------------|------------------------|-------------|---|--------------|------|----------| | | form" A | Þ | | | | | | | | | | | | | | | Hordness bid - Coliform os CoCO ₃ 11y MPN/ml Total N.C. ppm | | 2 | | 160 | | 70 | m | н | | | |
 | - | | <u> </u> | N C. Dom | 18 | | | 17 1 | | 77 | 17 | 02 | | | |
 | 1 | | | Horda
os Co
Total
ppm | 140 | 7.2 | 2 | 79 | | 96 | 122 | 145 | | | | | | | | L pos | 15 | 5 | 1 | 19 | | 15 | 13 | 7.7 | | | | | | | Total | solids
solids
in ppm | | | | | | 140 ^f | | | | | | | | | | Other constituents | | | | | | ABS 0.0 As 0.00
Po ₄ 0.05 | PO _{1,} 0.05 | | | | | | | | | Silica
(SiO ₂) | | | | | | OJ. | | | | | | | | | million
per million | Boron
(B) | 0.2 | - | | 0.1 | _ | 0.1 | 0.0 | 0.0 | | | | | | | | Fluo-
ride
(F) | | | | _ | | | | | | | | | | | ports per million
equivalents per mill | NI-
trote
(NO ₃) | | | | | | 1.3 | 0.00 | | | | |
 | | | equiv | Chlo-
ride
(Cl) | 7.4 | - | 0.17 | 9.5
0.27 | | 5.4 | 6.1 | 0.21 | | | | | | | Ē | Sul -
fote
(SO ₄) | | | | | | 25
0.52 | | | | | | | | | tifuents | Bicor-
bonate
(HCO ₃) | 143
2.34 | u. | 47.0 | 76 | | 93 | 11.93 | 149
2.44 | | | | | | | Mineral constituents in equivalents | Carbon – E | 3 0.10 | | 0.0 | 000 | | 3 | 50.17 | 2
0.07 | | | | | | | Miner | Potas- Ca
sium
(K) | m l o | (| o l o | 00 | | | NO | 0 1 0 | _ | _ | |
 | - | | | Sodium Por | to | | to | - ho | | 3 0.04 | | ko. | | | | | + | | | Sod (6 | 0.43 | | 0.28 | 8.8
0.38 | | 7-7 | 8.6 | 11
0.43 | _ | | . |
 | - | | | Magne- | () | | _ | | | 07.0 | £) | | | | | | + | | | Calcium
(Co) | 2.80 | | | 1.58° | | 30 | 2.44°C | 8.5 | | | | | 4 | | | A S (C) | 2 L | 1 | 7-7 | 7.3 | | 7.9 | 8.1 | 8 8 8 | | | · |
 | \dashv | | 2000 | conductonce
(micrombos
of 25°C) | 318 | 5 | 141 | 199 | | 223 | 273 | 324 | | | | | | | | Dissolved
oxygen
ppm %Sat | 76 | | 95 | 8 | | 46 | 89 | 105 | | | | | | | | | 10.1 | 0 | 10.8 | 10.7 | | 10.0 | 8.9 | 9.7 | _ | | |
 | | | | Temp
in OF | 57 | mpled | <u>Q</u> | mpled
45 | mpled | mpled
55 | 09 | poldur
67 | mpled | | | | | | | Dischorge Temp
in cfs in 0F | Est. | Not Sampled | | Not Sampled
EST.
35 45 | Not Sampled | Not Sampled
Est. 55 | 30 | Not Sampled
Est. 67 | Not Sampled | | | | | | | Dote
ond time
sompled
P.S.T. | 10/14/64 | 111/ | 12/3 | 2/11/65 | 3/65 | 4/65
5/11
0845 | 1430 | 7/65
8/4
1030 | 59/6 | | | | | b Laboratory pH. o Field pH. c Sum of colcium and magnesium in epm. d Heavy metals reported in table of "Spectrographic Analyses of Surface Water". f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. g Gravimetric determination. h Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, i Mineral analyses made by United States Geolagical Survey, Quality of Water Branch (USGS) -54- NORTH COASTAL REGION (NO.1) BLACK BUTTE RIVER NEAR COVELO (STA. 9h) | | Anolyzed
by i | | nscs | | | | | | | | | | | | |--|---|--------|-------------|--------------|---------|-----------------------|--------------|-----------------------|---|-------------|----------------------|-------------|---|--| | | bid - Caliform
ity MPN/mi
In ppm | | | | | | | | | | | | | | | 1 70 | pid -
ity
mppm | | Н | 10 | | 1400 | 120 | 380 | 100 | 10 | - | 0 | ч | | | | N CO3 | | 27 | 9 | | 91 | 16 | 15 | 12 | 50 | | 775 | 59 | | | | 1 1 | | 124 | 55 | | 72 | 78 | 77 | 72 | 112 | 170 | 178 | 212 | | | | Sod - | | 11 | 12 | | 6 | ω | | £ 0 | ∞ | t- | | <u>-</u> | | | Total | solved solved in ppm | | 169 | 142 | | \$ | | | 107 | | | | 272 | | | | Other constituents | | | | | PO ₁₄ 0.05 | PO4 0.10 | PO _{l,} 0.10 | ABS 0.0 AS 0.00
FO ₄ 0.10 | PO4 0.10 | PO ₄ 0,10 | Po4 0.05 | ABS 0.0 AS 0.00
Po ₄ 0.02 | | | | Silica
(SiO ₂) | | 6.9 | 9.3 | | 2.7 | | | 9 | | | | 13 | | | lian
million | C | | 0.0 | 0.0 | | 0.1 | 0.0 | 0.2 | 0.0 | 0.2 | 0,0 | 0,0 | 0,0 | | | millia
per mi | Fluo-
ride
(F) | | 0.03 | 0.1 | | | | | | | | | | | | ports per million
equivalents per mil | Ni-
trate
(NO ₃) | | 0.7 | 0°6
0°0 | | 1.3 | 0.00 | 1.8 | 1.4 | 1.4 | 1.3
0.02 | 2.5 | 0.1 | | | equiv | Chla-
ride
(CI) | | 3.2 | 0.02 | | 7.0 | 1.0 | 0.02 | 0.0 | 1.0 | 1.6 | 1.9 | 2°7 | | | L S | Sul -
fate
(SO ₄) | | 39. | 11
0.23 | | 0.31 | | | 16
0.33 | | | | 77. | | | constituents | Bicar-
banate
(HCO ₃) | | 106 | 60
0.98 | | 75 | 83 | 76 | 1,21 | 108 | 244 | 2.59 | 176
2.88 | | | Mineral car | Carban-
ate
(CO ₃) | | 02.0 | 000 | | 0000 | 00.00 | 0000 | 10.03 | 20.07 | 6 | 0.03 | 5 | | | Min | Patas-
sium
(K) | | 0.4
0.01 | 0.8 | | 0.03 | | |
0.9 | | | | 1.7 | | | | Sodium
(Na) | | 7.1 | 3.4 | | 3.4 | 3.5 | 4.5 | 3.4 | 0.50 | 6.1 | 6.2
0.27 | 7.5 | | | | Mogne-
sium
(Mg) | | 4.0 | 30 | | 2.9 | | | 0.23 | | | | 8.5 | | | | Calcium
(Ca) | | 43
2.15 | 17
0.35 | | 24
1.20° | 1.68 | 1.54c | 25 | 2.24° | 3.40 c | 3.56° | 77. | | | | 1 0 0 | | 8.1 | 7.4 | | 0 N | 8.1 | 26.2 | 8.3 | 7.8 | 0.0 | 889 | 0.17 | | | Specific | canductance
(micramhos
at 25°C) | | 276 | 124 | | 155 | 176 | 169 | 160 | 237 | 342 | 358 | 756 | | | | 15 | er4 | 16 | 95 | | 66 | 19 | 95 | 95 | 86 | 8, | 8 | 88 | | | | Oisso
oxyo
ppm | Sample | 10.4 | 11.2 | Sampled | 11.9 | 4.7 | 10.6 | 9.5 | 80 | 7.9 | 7.9 | ο.
 | | | | Temp
in of | Not | 50 | 43 | Not | 775 | 64 | 147 | 29 | 88 | 92 | 92 | 72 | | | | Oischorge Temp
in cfs in oF | | | | | | | | | | | | | | | | ond time
sompled
P.S.T. | ₩0/01 | 11/6/64 | 12/4
1205 | 1/65 | 2/2/65
0930 | 3/11
1220 | 4/15
1220 | 5/13
1105 | 6/9
1715 | 1/22 | 8/5 | 9/23 | | o Field pH. b Labaratary pH. c. Sum of calcium and magnesium in epm. d. Heavy metals reported in table of "Spectragraphic Analyses of Surface Water" e. Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) EEL RIVER NEAR DOS RIOS (STA. 5d) TABLE D-2 (Continued) | | | Anolyzed
by i | ISGS | | | | | | | | | | | | |-------------------|--------------|--|----------------|---------|------------|--------------|----------------------|----------------------|----------------------|---|----------------------|-----------------------|----------------------|--| | | 4 | bid - Coliformii
ity
n ppm
MPN/mi | _8 | | | | | | | | | | | | | | Tur | - piq
- piq
- ki
u bbm | Т | ч | 50 | | 100 | 15 | 200 | 20 | н | - | 0 | Ţ | | | | Hordnese
os CoCO ₃
Total N.C. | 115 8 | 126 13 | 57 1 | | 58 1 | 9 6 | 64 2 | 85 2 | 110 6 | 105 8 | 107 9 | 116 14 | | - | | To To | 20 | 17 1 | 17 | _ | 1 ₄ | 12 | 17 | 13 | 15 1 | 17 1 | 18 1 | 17 | | \mid | to to | mog ui | CU . | | | | | | | 116 [1 | | | | 165 1 | | - | 7 | | | | | | | | | | | | | | | | | Other constituents d | | | | | Po ₄ 0.10 | PO ₁ 0.05 | PO ₄ 0.15 | ABS 0.0 As 0.01
PO ₄ 0.10 | PO ₁ 0.10 | PO ₁₄ 0.10 | PO ₁ 0.05 | ABS 0.0 AS 0.00 PO ₄ 0.00 | | | | (S:02) | | | | | | | | 17 | | | 1 | T ==================================== | | 6 | nillion | Boron
(B) | 9.0 | 0.5 | 0.5 | | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.4 | 0.4 | <u> </u> | | ir milli | per million | Fluo-
ride
(F) | | | | | | | | | | | | | | ports per million | eguivolents | rrate
(NO ₃) | | | | | 1.2 | 0.0 | 1.8 | 1.5 | 0.02 | 0.03 | 3.0 | 0.00 | | | eguiv | Chio-
ride
(CI) | 9.4 | 8.1 | 22
0.06 | | 1.0 | 3.4 | 1.8 | 2.3 | 3.6 | 5.6 | 6.2 | 0.23 | | | <u>=</u> | Sul -
fate
(SO ₄) | | | | | | | | 12 0.25 | | _ | | 0.00 | | | constituents | Bicar-
bonate
(HCO ₃) | 130 | 134 | 68 | | 1.15 | 109 | 75 | 101 | 123 | 110 | 1.87 | 124
2.03 | | | Mineral co | Corbon-
ofe
(CO ₃) | 00.00 | 20.07 | 00.00 | | 00.00 | 00.00 | 00.00 | 00.00 | 20.07 | 4
0.13 | 3 0.10 | 000 | | 1 | ž | Potos-
sium
(K) | | | | | | | | 0.03 | | | | 0.04 | | | | Sodium
(No) | 13 | 12 0.52 | 5.2 | | 4.3 | 6.2 | 6.2 | 5.9 | 9.0 | 10 | 1100.48 | 0.48 | | | | Mogne-
sium
(Mg) | | | | | | | | 6.1 | | | | 0.57 | | | Ī | Calcium
(Ca) | 2.30 | 2.52 | 1.14 | | 1.16 | 1.90 c | 1.28 | 24
1.20 | 2.20 | 2.10 | 2.14 c | 1.75 | | | | F 910 | 00 00
00 00 | 8.3 | 8.1 | | 8.2 | 8.7 | 8.1 | 000 | 7.7.8 | 8.1 | 4.8 | 0.E | | | Specific | conductance
(micromhos
at 25°C) | 281 | 599 | 135 | | 129 | 208 | 148 | 188 | 544 | 247 | 255 | 277 | | | | 1 75 (| 96 | 8 | 8 | | 66 | 82 | 88 | 97 | 112 | 101 | 95 | 92 | | | i | Dissolved
oxygen
opm %S(| 9.1 | 5.6 | 10.7 | | 11.2 | 0.6 | 9.5 | 8.7 | 6.0 | 9.6 | 0.8 | φ•
ω | | | 1 | Temp
in OF | 62 | 55 | 917 | sible | 84 | 51 | 51 | 19 | 75 | 72 | 73 | 19 | | | | Dischorge Temp
in cfs in PF | 3.4 | 50 | | Inaccessible | | 180 | 1600 | 290 | 09 | 15 | 10 | 6. | | | | ond time
sampled
P.S.T. | 10/15/64 | 11/6 | 12/4 | 1/65 | 2/1 | 3/11 | 1000 | 5/13 | 6/9 | 7/22 0905 | 8/5
0815 | 9/23
0850 | o Field pH. b Laboratory pH. c Sum of calcium and magnesium in epm. d Heavy metals reported in table of "Spectragraphic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral anolyses made by United States Geological Survey, Quality of Water Branch (USGS); EEL RIVER NEAR McCANN (STA. 5) NORTH COASTAL REGION (NO.1) Anolyzed by i USGS Coliformh MPN/ml Н ∞ \vdash \vdash _ 9 80 9 80 9 12 Hardness os CoCO₃ Total N.C. ppm ppm ∞ ∞ 0 19 10 28 S 13 Ħ 160 173 53 92 96 8 119 181 136 87 Total Par-dis-solved sod-solids lum in ppm 10 10 2 11 13 71 10 10 H 디 \Box 116f 220f O Other constituents 0.0 As 0.00 0.03 0.0 As 0.00 0.10 ABS PO_L ABS PO₁ Silica (SiO₂) 걸 H Baron (B) 0.2 0.1 0.1 0.2 0.2 0.2 0.0 0.0 0.1 0.5 0.5 equivalents per million ports per million Flug-ride (F) rate (NO3) 1.00 000 6.9 2.2 4.8 5.5 Chlo-cide (CI) 2.0 2.8 0.37 5.3 Sul -fate (SO_a) 13 28 Mineral constituents in Bicar-banate (HCO₃) 2.70 3.10 3.25 $\frac{103}{1.69}$ 2.07 60.98 Carban-ote (CO₃) 000 000 000 0.13 0.00 0.13 00.00 0.00 7.0.23 0.13 0.03 0.05 Potas-Sium (K) Sadium (No) 9.2 4.4 8.1 9.8 7.6 0.18 5.2 5.0 6.0 8.5 1.03 Magne-Stum (Mg) 6.1 1.00° Calcium (Ca) 0 0 7.8 2.9 0.0 2000 88.0 7.7 H ele Specific conductance (micramhas par 25°C) 248 330 373 118 198 288 315 164 184 %Sot Dissolved 100 66 66 16 86 8 82 100 102 97 46 cessib 11.0 11.5 8.6 10.6 8.8 8.7 8.7 8.9 9.1 9.6 Discharge Temp in cfs in oF Ina 69 87 53 53 63 12 7 58 51 19 69 Date and time sampled P.S.T 10/14/64 6/9 7/21 5/12 11/5 12/3 1/65 2/9 3/10 1,714 Field pH. c Sum of calcium and magnesium in epm. d Heavy metals reported in table of "Spectragraphic Analyses of Surface Water" Derived fram canductivity vs TDS curves. Determined by addition of analyzed constituents Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Califarnia Department of Public Health, Division of Laborataries, Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); MIDDLE FORK EEL RIVER AT DOS RIOS (STA. 5c) NORTH COASTAL REGION (NO. 1) | | Analyzed
by i | nsgs | | | | | | | | | | | | |----------------------|---|-------------|---------|-------|--------------|-------------|-------------|-----------------------|---|-----------------------|-----------------------|-----------------------|---| | 4 | E E | Ü | | | | | | | | | | | | | Į | bid - Coliform" ity MPN/ml | | | 09 | | 800 | 100 | 200 | 140 | 11 | ч | -г | н | | - F | N.C. ppm | 75 | 23 | 7 | | 9 | 10 1 | 6 | 7 | 13 | 32 | 37 | 95 | | | Hordness
oc CoCO ₃
Total N.C.
ppm ppm | 151 | 120 | 54 | | 7.9 | 82 | 833 | 75 | 107 | 169 | 174 | 194 | | - 1 | sod - | 19 | 18 | 12 | | 6 | σ. | 김 | 10 | 07 | 10 | 11 | 12 | | Total | solved
solids
in ppm | | | | | | | | 102 | | | | \$ [†] | | | Other constituents d | | | | | | | PO _{1, 0.15} | ABS 0.0 As 0.00
PO ₄ 0.10 | PO _{1, 0.10} | PO _{1,} 0.10 | PO _{1, 0.05} | ABS 0.0 As 0.00 PO ₄ 0.09 | | | Silico
(SiO ₂) | | | | | ما | ما | | 10 | .1 | | ~l | 21 | | per million | - Boron
(B) | 0.3 | 0.3 | 0.3 | | 0.0 | 0.0 | 0.4 | 0.1 | 0.1 | 4.0 | 0.3 | 0.0 | | - I | Fluo-
ride
(F) | | | | | | | | | 1 | | | olo | | parts pe | NI-
trate
(NO ₃) | | | | | 0.05 | 0.00 | 0.03 | 0.0 | 0.00 | 0.02 | 0.9 | 000000000000000000000000000000000000000 | | equi | Chlo-ride (CI) | 38 | 14 | 0.03 | | 0.03 | 1.8 | 0.05 | 0.05 | 2.6 | 8.2 | 0.28 | 0.45 | | n: s | Sul -
fate
(SO ₄) | | | | | | | | 13 | | | | 29
1.23 | | Mineral constituents | Bicar-
bonate
(HCO ₃) | 126
2.07 | 110 | 61 | | 80 | 88 | 90 | 83 | 107
1.75 | 153
2.51 | 141
2.31 | 2.64
2.69 | | eral con | Corbon-
ate
(CO ₃) | 00.00 | 2 0.07 | 00.00 | | 00.00 | 0.00 | 0.00 | 00.00 | 20.07 | 0.23 | 13 | 0.07 | | Min | Potas-
Sium
(X) | | | | | | | | 0.0 | | | | 0.02 | | | Sodium
(No) | 17 | 12 0.52 | 3.5 | | 3.5 | 4.0 | 4.7
0.20 | 3.8 | 5.1 | 8.6 | 9.7 | 0.52 | | | Magne-
sium
(Mg) | | | | | | | | 0.40 | | | | 1.38 | | | Colcium (Co) | 3.14 | 2.40 | 1.08 | | 1.44 c | o 49. | 0
1.66 | 25 | 2.08 | 3.38 | 3.48 | 2.50 | | | E ala | 88.2 | 7.8 | 8.0 | | 8.2 | 8.2 | 8.0 | 8.0 | 217 | 8.8 | 8.1 | 1.1.
0.00 | | pecific | (micromhos pH at 25°C) a | 394 | 300 | 121 | | 154 | 177 | 180 | 164 | 222 | 353 | 368 | 914 | | 0. | lved co | 110 | 101 | 16 | | 100 | 93 | % | 76 | 102 | 102 | 101 | 103 | | | Dissolved
oxygen
ppm %Sc | 10.3 | 10.8 | 11.0 | | 11.9 | 10.6 | 7.6 | 10.0 | 8.7 | 8.7 | 8.7 | 9.6 | | | Temp
in of | 79 | 52 | 143 | sible | 717 | 24 | 84 | 55 | 72 | 22 | 73 | 79 | | | Discharge Temp
in cfs in oF | 9.5 | 106 | 0104 | Inaccessible | 0569 | est.
600 | 5240 | 1400 | 907 | 69 | <u>1</u> | 25 | | | ond time
sompled
P.S.T. | 10/14/64 | 11/6 | 12/4 | 1/65 | 2/2
1145 | 3/11 0950 | 1020 | 5/13 | 6/9 | 7/22 0935 | 8/5 | 9/23
0920 | b Loboratory pH. d Heavy metals
reported in table of "Spectrographic Analyses of Surface Water" c Sum of calcium and magnesium in epm. f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) MIDDLE FORK EEL RIVER AT EEL RIVER RANGER STATION (STA. 5g) | | Analyzed
by i | | nsgs | | | | | | | | | | | |------------------------|---|-------------|----------------|------------|-------------|-----------------|------------|-------|-----------------|-------|----------|----------------|------------| | | bid - Coliformh | | | | | | | | | | | | | | | bid-
ty
mpg n | | 7 | Ŋ | | 500 | 09 | 150 | 140 | 10 | - | 0 | н | | | 2003
CO3 | | 17 | 7 | | m | 9 | 2 | m | 00 | 33 | 43 | 65 | | | 1 | | 76 | 42 | | 75 | 57 | 26 | 1,48 | 69 | 146 | 163 | 196 | | | Sod - | | 23 | 13 | | 10 | 10 | 1 | 7 | 12 | 77 | 77. | 16 | | Total | solids
solids
mod ni | | 140f | 58f | | 80 ^f | | | 72 [£] | | | | 272 | | | Other constituents d | | | | | | | | | | | | | | | Silica
(SiO ₂) | | <u>F-9</u> | 1.9 | | 8.6 | | | 7.2 | | | | 11 | | lion | 5 | | 0.1 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.2 | 4.0 | | million
per million | Fluo-
ride
(F) | | 0.00 | 0.3 | | | | | | - | | | | | ports per million | _ | | 00.00 | 0.0 | | 0.0 | 0.00 | 0.0 | 0.9 | 0.05 | 1.3 | 0.9 | 00.00 | | equive | Chlo-
ride
(CI) | | 16 | 0.0 | | 0.0 | 1.8 | 0.05 | 1.7 | 3.7 | 17 | 23
0.65 | 0.96 | | 2 | Sut -
fote
(SO ₄) | | 21 0.44 | 7.0 | | 9.0 | 10 | | 7.0 | | <u> </u> | (4)0 | 1.12 | | Mineral constituents | Bicor-
bonote
(HCO ₃) | | 9.1 | 46
0.75 | | 62
1.02 | 62
1.02 | 1.02 | 55 | 74 | 132 | 140 | 2.46 | | arol cor | Carbon-
ote
(CO ₃) | | 3.0 | 00.00 | | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 3 | 3 | 0.17 | | Min | Potas-
Sium
(K) | | 0.0 | 0.0 | | 1.1 | 0,0 | 0,0 | 0.0 | | . 10 | V-110 | 0.00 | | | Sodium
(Na) | | 13 | 2.9 | | 2.8 | 3.1 | 3.2 | 2.8 | 4.1 | 11 0.48 | 12 0.52 | 00-74 | | | Mogne-
sium
(Mg) | | 6.0 | 2.3 | | 2.8 | | | 2.6 | | | | 0.98 | | | Calcium (Co) | | 29 c | 13 c | | 17 c | 1.14 c | 1.12 | 15 | 1.38° | 26.2 | 3.26 | 900
46. | | | ج هاره
ماله | | 80 80
61 12 | 4.0 | | 8.2 | 7.6 | 7.7 | 7.7 | 8.2 | 8.5 | 88 | 11.00 | | 0.00 | conductonce
(micromhos
at 25°C) | | 251 | 96 | | 120 | 125 | टा | 109 | 156 | 332 | 372 | 1463 | | | | | 107 | 88 | | 86 | 88 | 95 | 97 | 95 | 66 | 100 | 104 | | | Dissolved
oxygen
ppm %Sol | | 11.5 | 10.5 | | 11.7 | 6.6 | 10.8 | 10.1 | 4.8 | 8.2 | 8.2 | 7. | | - | | led | 50 | 1,2 | led | 775 | 74 | 94 | 53 1 | 67 | 73 | 1 2 | 5 | | | Discharge Temp
in cfs in oF | Not Sampled | | | Not Sampled | | | | | | | | | | | Dote and time sompled P.S.T. | 10/64 | 11/6 | 12/4 | 1/65 | 2/2 0900 | 3/11 | 1210 | 5/13 | 1700 | 7/22 | 8/5
1130 | 1130 | o Field pH. b Loboratory pH. c Sum of calcium and magnesium in epm. d Heovy metals reported in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); g Gravimetric determination. ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued) EEL RIVER AT SCOTIA (STA. 6) | | yzad
i | | | | | | | | | | | | | | |--------------|---|---------------|-----------------|-----------------|--------------|-------------|----------|-----------------|--|-------------|-------------|-------------|--|---| | | Analyzed
by i | USGS | Ħ | я | | | | | | | | | | | | | bid - Coliform" ity MPN/ml | Median
425 | Maxdmtm
7000 | Minimum
0.62 | | | | | | | | | | | | Tur | - bid
ity
in ppm | ч | m | 500 | | 200 | 2 | 120 | 75 | Ħ | m | н | н | | | | S S S S S S S S S S S S S S S S S S S | 0 | 11 | 2 | | 7 | ľ | 9 | 7 | 9 | 0 | m | ι - | | | | | 137 | 129 | 7,5 | | 81 | 83 | 85 | 26 | 123 | 153 | 156 | 174 | | | - | sod - | 77 | 77 | ₹ | | 13 | 27 | 15 | # | 12 | 27 | 12 | 12 | | | Toto | solved
solids
in pam | | | | | | | | 131 [£] | | | | 204 [£] | | | | Other constituents d | | | | | | | | ABS 0.0 As 0.00
Po _{t,} 0.10 | | | | ABS 0.0 As 0.00
PO _{\upper} 0.02 | | | Ì | Silica
(SiO ₂) | | | | | | | | 킈 | | | | 9.6 | | | lion | Boron (B) | 0.1 | 0.1 | 0.1 | | 0 | 1.0 | 0.1 | 0.1 | 0.1 | 1 | 0.1 | 0.0 | | | per million | Fluo-
ride
(F) | | | | | | | | | | | | | | | 1 1 | Ni-
trate
(NO ₃) | | | | | | | | 1.3 | | | | 0.0 | | | equivalents | Chio-
ride
(CI) | 7.8 | 8.6 | 4.8
0.14 | | 2.6
0.07 | 3.6 | 3.1 | 3.0 | 3.3 | 5.6 | 6.2 | 7.3
0.21 | | | _ | Sut -
fote
(SO ₄) | 1-10 | <u> </u> | | | 10,0 | | .,,, | 13.
0.27 | . ,,0 | - 40 | | 20°.
0°42 | | | | | Im | ko | | | | to | 11- | 1.5 | lto | IO | 11:- | | _ | | constituents | - Bicar-
bonate
(HCO ₃) | 148
2•43 | 2.36 | 0.80 | | 1.5 | 115 | 1.57 | 108 | 139 | 172
2.82 | 175
2•87 | 3.03 | | | Mineral c | Corbon-
ofe
(CO ₃) | 10 | 000 | 0.00 | | 0000 | 000 | 000 | 3 | 2
0.07 | 7.0.23 | 0.20 | 8
0.27 | | | Σ | Potos-
Sium
(K) | | | | | | | | 0.03 | | | | 0.05 | | | | Sodium
(Na) | 10
0.44 | 9.6 | 6.5 | | 5.5 | 6.0 | 7.2 | 5.6 | 7.4
0.32 | 2.1
0.40 | 9.8
0.43 | 11.
0.43 | | | | Magne- S
sium
(Mg) | HIO | odo | 010 | | 140 | 010 | K-10 | 9.9 | | 040 | - 040 | 0.84 | | | | Calcium N | 5 <u>74</u> c | 5.58° | 206.0 | | 329: |]
%:1 | | 28. | 3 94.2 | 3.06 | 3.12° | 2.64 | | | | PH
D | 8 8 4 8 | 0.0 | 7.3 | | 7.7 | 7.7 | 7.9
8.2
1 | 8.0 2 | 88.1 | 8.6 | 7.9
8.5 | 88.0 | | | Specific | (micromhos
at 25°C) | 306 | 301 | 122 | | 181 | 216 | 192 | 509 | 560 | 328 | 330 | 357 | | | | | 149 | 901 | 8 | | % | 75 | 77 | ま | | 8, | 100 | 75 | | | | Dissolved
oxygen
ppm %Sa | 13.2 | 10.9 | 9.8 | | 11.3 | 8°.0 | 10,1 | 80.00 | 8.3 | 7.9 |
2 | 4.6 | | | | | 고 | 82 | 23 | ble | 164 | 53 | 57 | 99 | | 72 | 73 | 63 | | | | Discharge Temp
in cfs in aF | 88 | 815 | 30,600 | Inaccessible | 900,11 | 2,800 | 1,390 | 6,320 | 1,050 | 545 | टार | 142 | | | | ond time
sampled
P.S.T. | 10/14/64 | 7/11 | 12/2
1335 | 1/65 | 2/9 | 3/10 | 4/14
1230 | 5/12
5411 | 1700 | 1,20 | 8/3
1630 | 9/22
0725 | | o Field pH. b Laboratory pH. c. Sum of calcium and magnesium in epm. d. Heavy metals reparted in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department af Public Health, Division af Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); ⁻⁶⁰⁻ TABLE D-2 (Continued) ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) SOUTH FORK EEL, RIVER NEAR MIRANDA (STA. 7) | Г | | v | | | _ | | | | | | | | | | |---|---------------------|---|-----------------|----------------|----------------|--------------|-------------|-------|--------------|--|--------|-------|-----------------------|---------------------------------------| | | | Anolyzed
by i | USGS | | | | | | | | | | | | | | | bid - Coliform
tty
n ppm MPN/ml | Median
17.12 | Maximum
62. | Minimum
.06 | | | | | | | | | | | | | - pid
Apple | н | Н | 200 | | 120 | 8 | 04 | Ħ | 2 | N | ч | н | | | | N C O S | 10 | 5 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Hordr
Totol
Ppm | 130 | 105 | 4 | | 29 | 88 | 92 | 833 | 108 | 137 | 140 | 165 | | | | t e do | 77 | 16 | ส | | 18 | 15 | 16 | 15 | 14 | 15 | 15 | 13 | | | Total | solids
in ppm | | | | | | | | 117 | | | | 197 | | | | Other constituents ^d | | | | | | | | ABS 0.0 As 0.00
PO _{1,} 0.10 | | | PO _{1,} 0.05 | ABS 0.0 As 0.00 Po _{th} 0.06 | | | | Silica
(SiO ₂) | | | | | | | | 13. | | | | 13. | | | million | Boron
(B) | 0.2 | 0.3 | 0.1 | | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | | | per m | Fluo-
ride
(F) | | | | | | | | | | | | | | (| equivalents per mil | Ni-
trate
(NO ₃) | | | | | | | | 0.9 | | | 3.1 | 0.0 | | | equiv | Chlo-
ride
(CI) | 5.3 | 7.4 | 2.7 | | 0.08 | 3.9 | 3.4 | 3.7 | 3.8 | 5.8 | 6.2 | 0.21 | | | E . | Sul -
fate
(SO ₄) | | | | | | | | 8.0 | | | | 0.25 | | | constituents | Bicar-
bonate
(HCO ₃) | 138 | 1.90 | 51 | | 384 | 108 | 95
1.56 | 1.62 | 129 | 2.59 | 2.72 | 3.26 | | | Mineral cor | Carbon-
ote
(CO ₃) | 4
0.13 | 3 0.10 | 00.00 | | 0.00 | 00.00 | 0.00 | 20.07 | 3 0.10 | 0.23 | 5 0.17 | 0.07 | | 1 | Ā | Potos-
sum
(K) | | | | | | | | 1.1
0.03 | | | | 0.04 | | | | Sodium
(N0) | 7.6 | 9.4 | 5.1 | | 6.6 | 7.0 | 6.7 | 6.8 | 8.2 | 11. | 11.
0.48 | 0.48 | | | | Magne-
sium
(Mg) | | | | | | | | 6.8 | | | | 1.10 | | | | Calcium
(Ca) | 2.60 | 2.10° | 0.82 | | 1.34° | 1.76° | 1.52° | 22. | 2.16 | 2.74c | 2.80 | 44.
2.20 | | | | 를 ¤Io | 8 8 8 | 88.3 | 7.5 | | 7.4 | 8.1 | 8.2 | 8.5 | 8.0 | 88.8 | 80 80 | 0 E | | | Specific | conductonce
(micromhos
of 25°C) | 278 | 246 | 104 | | 154 | 197 | 178 | 190 | 238 | 295 | 300 | 349 | | | | 5 | 102 | 116 | 103 | | 89 | 88 | 88 | 8. | 93 | 119 | 129 | 112 | | | | Disso
oxy
ppm | 9.6 | 11.7 | 11.11 | | 10.5 | 9.6 | 10.1 | 8.0 | 0.6 | 10.2 | 10.8 |
10.2 | | | | Temp
in 0F | 65 | 59 | 53 | ible | 917 | 52 | 52 | 88 | 62 | 47 | 76 | 89 | | | | Discharge Temp
in cfs in 0F | 31 | 134 | 5370 | Inaccessible | 1400 | 200 | 720 | 1360 | 232 | 88 | 82 | 79 | | | | Dote ond time sompled P.S.T. | 1330 | 11/5 | 12/3 | 1/65 | 2/9
1245 | 3/10 | 4/14
1500 | 5/12
1430 | 6/9 | 7/21 | 8/4
1500 | 9/22 | b Laborotory pH. c Sum of colcium and magnesium in epm. d Heavy metals reported in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves f Determined by addition of analyzed constituents. g Grovimetric determination. h Annuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Heolth, Division of Loboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); KIAMATH RIVER ABOVE HAMBURG RESERVOIR SITE (STA.1c) NORTH COASTAL REGION (NO. 1) | | Anolyzad
by i | USGS | | | | | | | | | | | | | | |-------------------------|--|---------|------|-------------|------|---------|-------|-------|-------|--------------------------------------|-----------------------|----------------------|--------------|---|---| | A | J/mt A: | ñ | | | | | | | | | | | | | | | | bid - Coliform" ify MPN/mi | | | | | | | | | | | | | | | | | P P C | ε | | Ω | | 20 | 04 | 25 | 50 | 133 | <u>е</u> | m | m | m | | | | Hordness
as CoCO ₃
Total N.C. | ਰ
E | | 0 | | 0 | 0 | | · · | 0 | 0 | 0 | O | - | | | | sod - as | | | - 1 | 81 | 75 | 58 | 26 | 85 | 1 95 | 607 | 120 | 124 | 109 | | | | solved solved in pom | 34 | | 35 | 37 | 31 | 53 | 30 | 35 | 189f 31 | 34 | 37 | 14 | 264£ 42 | | | ہَۃِ،
ا | q | | _ | | | | | | | 77 | | | | | | | | Other constituents | | | | | | | | | ABS 0.1 AS 0.01 PO ₄ 0.15 | PO _{1, 0.10} | PO ₁ 0.25 | PO1, 0.50 | ABS 0.0 As 0.01
PO ₄ 0.77 | | | Ì | Silico
(\$102) | | | | | | | | | 22 | | | | 56 | | | Hion | Boron
(B) | 0.0 | | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 7.0 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | | | per million | Fiuo- | | | | | | | | | | | | | | | | | rote (NO.) | _ | 0.04 | 0.07 | 5.2 | 2.0 | 3.7 | 1.6 | 1.3 | 0.02 | 0.00 | 3.0 | 2.2 | 0.04 | | | ports pe
equivalents | Chlo-
ride | | | 0.18 | 5.7 | 3.5 | 0.00 | 2.2 | 6.2 | 5.6 | 0.23 | 9.0 | 10. | 0.24 | | | Ĕ | Sul -
fote
(SO.) | | | | | | (0)0 | | | 31. | | | | 1.39 | | | Mineral constituents | Bicor-
bonote
(HCO-) | | 1.87 | 107 | 115 | 87 | 80 | 76 | 1.87 | 121 | 128
2.10 | 142
2.33 | 2.43 | 2.25 | | | e cons | Corbon - E | | | 00.00 | 00.0 | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 0.20 | 2
0.07 | 2
0.07 | 00.00 | _ | | Miner | Potos- Co | | o | olo | olo | olo | olo | 00 | 00 | 0000 | 9 0 | a l 0 | α Ι Ο | 000000000000000000000000000000000000000 | | | | Sodium Po
(Na) | | im | lm lm | ło. | | ko | ko | 11:- | | lm | 10 | IO | | | | | | 18. | 0.78 | 18.
0.78 | 0.96 | 13. | 11. | 11. | 20. | 1 20.
75 0.87 | 26. | 32. | 39. | 1.65
1.65
1.65 | | | | Magne- | O | | ٥١٠ | ٥١. | ۰۱. | ٥١٥ | ۰٫۱۰۰ | ٥١. | 9.1 | ا ا | <u> </u> | ما | 1.18 | | | | Colcium
(Ca) | | 1.54 | 1.42 | 1.62 | 1.28 | 1.16 | 1.12 | 1.64 | 23. | 2.18 | 2.40 | 5.48 | , 00
1, 00
1 | | | .0 | C) S G | 7.9 | 7.9 | 7.6 | 8.2 | 7.4 | 7.4 | 7.6 | 7.9 | 000 | 88 | 2.88 | 9.0 | 0.817 | | | Specif | (micromhos
of 25°C) | 228 | | 516 | 256 | 181 | 163 | 163 | 247 | 275 | 324 | 373 | 418 | 385 | | | | Dissolved
oxygen | 101 | | % | 87 | - 98 | 93 | 92 | 98 | 76 | 66 | 107 | 103 | 104 | | | | Disso | 4.6 | | 10.3 | 10.2 | 11.2 | 11.3 | 10.9 | 6.6 | 8.6 | 5.6 | 8.7 | 8.0 | 9.6 | | | | Temp
in oF | 62 | | 50 | 77 | 36 | 147 | 43 | 82 | 55 | 59 | 75 | 70 | 63 | | | | Dischorge Temp | | | | | | | | | | | | | | | | | Dote
ond time
sompled | 19/9/01 | 1040 | 11/11 | 12/8 | 1/13/65 | 2/3 | 3/3 | 1220 | 5/4
1115 | 6/15 | 7/14 | 8/11
1220 | 1150 | | a Field pH. b Loboratory pH. c Sum of calcium and magnesium in epm. d Heavy metals reported in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Duality of Water Branch (USGS); -62- TABLE D-2 (Continued) ANALYSES OF SURFACE WATER KLAMATH RIVER BELOW IRON GATE DAM (STA. 1f) NORTH COASTAL REGION (NO. 1) | | Anolyzed
by i | USGS | | - | | | | | | | | | | |------------------------|---|----------------------|-----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|---|-----------------------|-----------------------|----------------------|------------------| | | bid - Coliform
11y MPN/ml | Medium
43 | Maximum
24,000 | Minimum
2.3 | · · · · · | | | | | | | | | | | - pid - | н | CI CI | - - | 50 | 30 | 02 | 15 | 5 | 2 | ന | ന | m | | | N.C. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 7 | - | | | | 63 | 52 | 78 | 14] | 143 | 717 | 59 | 16 | 205 | 111 | 116 | 70 | | | sod – | 36 | 37 | 38 | 37 | 36 | 36 | 39 | 36 | 39 | 7 7 | 44 | 0 7 | | Totol | solived
solids
in ppm | | | | | | | | 187 ^f | | | | 263 ¹ | | | Other constituents d | PO ₄ 0.45 | Po _{1,} 0.60 | PO ₁ 0.50 | PO ₁ 0.50 | PO ₄ 0.20 | PO _{1, 0.25} | PO _{1, 0.30} | ABS 0.0 As 0.00
PO ₄ 0.20 | PO _{1,} 0.15 | PO _{1,} 0.50 | PO ₄ 0.55 | ABS 0.0 As 0.01 | | | Silico
(SiO ₂) | | | | | | | | 23 | | | | 28 | | Lion | Boron
(B) | 0.0 | 0.1 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 1,0 | | million
per million | Fluo-
ride
(F) | | | | | | | | | | | | | | 1 20 1 | Ni-
trote
(NO ₃) | 3.4 | 5.1 | 5.2 | 4.7 | 3.8 | 2.0 | 1.2 | 0.0 | 1.3 | 2.8 | 3.2 | 0.07 | | ports p | Chlo-
ride
(CI) | 3.6 | 3.3 | 5.0 | 2.5 | 1.6 | 2.4 | 3.4 | 5.5 | 8.7 | 8.5 | 9.5 | 0.22 | | Ē | Sul -
fate
(SO ₄) | | | <u>-</u> | | | | | 35 | | | | 1.48 | | constituents | Bicar-
bonate
(HCO ₃) | 93
1.52 | 1.26 | 102 | 80.0 | 59
0.97 | 62 | 78 | 121 | 94 | 130 | 136 | 126
2.07 | | 1 | Corbon-
ote
(CO ₃) | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00:00 | 00.00 | 18 | 0.00 | 00.00 | 00.00 | | Mineral | Potos-
Srum
(K) | | | | | | | | 1.6 | · | | | 0.13 | | | Sodium
(No) | 16. | 14.
0.61 | 0.96 | 0.48 | 11.0 | 11. | 17.0 | 24. | 30. | 35. | 1.83 | 1.48
1.48 | | | Mogne-
Sium
(Mg) | | | CUIO | | | | .,, | 10 | . 4. | | | 0.98 | | | Colcium
(Co) | 1.26 c | 1.04 | 1.56 | 0.82 | 98.0 | ° 78.0 | 1.18 | 20 | 2.04 | 2.22 | 2.32 | 1.10 | | | مانه خ | 3.0 | 8.0 | 7.2 | 7.3 |
4.7 | 7.8 | 7.5 | 0000 | 8.9 | ⇒ C
∞ ∞ | 8.1 | 9.7.2 | | Specific | conductance
(micromhos
of 25°C) | 197 | 167 | 544 | 138 | 137 | 137 | 193 | 285 | 340 | 378 | 424 | 375 | | | 1 % | 26 | 69 | 73 | 100 | 96 | 16 | 93 | 83 | 115 | 113 | 833 | 85 | | | Disso
oxy
oxy | 8.5 | 7.1 | 8.5 | 12.8 | 11.4 | 10.5 | 10.1 | 80.0 | 6.6 | 4.6 | 7.0 | <u>-</u> | | | Temp
in OF | .61 | 52 | 43 | 36 | 17 | €, | 148 | 55 | 29 | 70 | 68 | 63 | | | Dischorge Temp
in cfs in oF | 1360 | 1890 | 2700 | 9530 | 11200 | 7880 | 3670 | 1660 | 778 | 708 | 1020 | 2220 | | | Dote
ond time
sampled
P.S.T. | 10/6/64 | 11/11 0930 | 12/8
0950 | 1/13/65
1035 | 2/3 | 3/3 | 0560
7/4 | 5/4
0835 | 6/15 | 7,414
0935 | 8/11 | 9/15
0945 | b Laboratory pH. c Sum of calcium and magnessum in epm. d Heavy metals reported in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Grovimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); TABLE D-2 (Continued) ANALYSES OF SURFACE WATER NORTH COASTMIL FROSTON (NO. 1) NORTH COASTAL REGION (NO. 1) KLAMATH RIVER NEAR KLAMATH (STA. 3) | | Anolyzad
by i | USGS | | | | | | | | | | | | | |------------------------|---|---------------|----------------|-----------------|--------------|--------------|-------|--------------|---|----------|-------------|-------------|---|--| | - | | | E. | er. | | | | | | | | | | | | | Hordness bid - Coliform ^N os CoCO ₃ ity MPN/ml Total N.C. ppm | Median
313 | Maximum
620 | Minimum
0.23 | | | | | | | | | | | | 1 | - bid
- fiy
mgg u | -1 | α. | 140 | | 003 | 80 | 30 | 50 | 25 | 4 | -3 | 10 | | | | dness
CoCO ₃
N.C. | 0 | 0 | 2 | | 0 | 0 | 0 | α | a | 7 | | н | | | | 1 1 | 77 | 75 | 39 | | 9 | 65 | 77 | 70 | 22 | 75 | 108 | 1174 | | | 9 | Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos | 77. | 23 | 16 | | 17 | 16 | 16 | 16 | 18 | 19 | 19 | 31 | | | Total | solved
solids
in ppm | | | | | | | | 102 ^f | | | | 210f | | | | Other constituents d | | | | | | | | ABS 0.0 As 0.00
PO ₁ 0.05 | | | 19 | ABS 0.0 As 0.00
PO ₄ 0.33 | | | | Silico
(SiO ₂) | | | | | | | | 15 | | | | 21 | | | lion | Boron
(B) | 0.0 | 0.1 | 0.1 | | 0.0 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.1 | 0.1 | | | million
per million | Fluo-
ride
(F) | | | | | | | | | | | | | | | 15.1 | Ni~
trate
(NO ₃) | | | | | | - | | 1.6 | | | | 0.02 | | | ports pe | Chlo-
ride
(Cl) | 4.9 | 5.2 | 1.4 | | 2.6
0.07 | 1.1 | 2.8 | 2.3 | 0.06 | 0.13 | 5.6 | 0.20 | | | ë | Sul -
fote
(SO ₄) | | | | | | | | 11
0.23 | | | | 0.92 | | | constituents | Bicar-
bonate
(HCO ₃) | 104
1.70 | 96 | 42 | | 74 | 80 | 94 | 81 1.33 | 83 | 118
1.93 | 122 | 138
2.26 | | | | Corbon-
ote
(CO ₃) | 00.00 | 0.00 | 00.00 | | 0.00 | 00.00 | 0000 | 10.03 | 0000 | 14
0-13 | 0.13 | 0000 | | | Mineral | Potos- C
sium
(K) | | | | | | | | 0.0 | | | | 3.1 | | | | Sodium (Na) | 110.48 | 10 | 3.4 | | 5.5 | 5.7 | 6.9 | 6.1 | 6.8 | 0.48 | 12
0.52 | 23 | | | | Magne-
sium
(Mg) | | | | | | | | 6.1 | | | | 10
0.83 | | | | Calcium
(Ca) | 0
1.54 | 1.50 | 0.78 | | 1.20 | 1.30 | 1.54 | 1.8 | 1.40 | 2.08 | 2.16 | 299 | | | | P B I O | 8.0 | 7.7 | 7.4 | | 7.8 | 7.6 | 7.6 | 2 7 8 | 7.8 | 8.5 | 8.0 | 8.0 | | | Specific | conductonce
(micromhos
of 25°C) | 200 | 193 | 88 | | 141 | 154 | 175 | 164 | 164 | 247 | 261 | 327 | | | | 5 | 8 | 87 | 00 | | 8 | 48 | 87 | 95 | 98 | 66 | 107 | 66 | | | | Dissolved
axygen
ppm %Sc | 4.6 | 9.3 | 11.5 | | 11.5 | 9.5 | 9.6 | 9.6 | о.
Э. | 6.8 | 9.3 | 7.6 | | | | Temp
in oF | 62 | 55 | 167 | ible | 1t3 T | 50 | 52 | 59 | 63 | 10 | 73 | 8 | | | | Dischorge Temp
in cfs in oF | 2990 | 4150 | 62200 | Inaccessible | 32400 | 20100 | 11600 | 13700 | 8300 | 3840 | 3100 | 2400 | | | | ond time
compled
P.S.T. | 10/15/64 | 11/4 | 12/2 | 1/65 | 2/10
1010 | 3/9 | 4/14
0830 | 5/12 | 6/8 | 7/20 | 8/3
1315 | 1300 | | o Field pH. b Laboratory pH. c Sum of calcium and magnesium in epm. d Heavy metals reported in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labaratories, Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); Gravimetric determination. NORTH COASTAL REGION (NO. 1) KLAMATH RIVER AT ORLEANS (STA. 2c) | _ | | | | | | | | | | | | | | |--------------|---|----------|-----------------|--------------------|--------------|-------|-------------|--------------|---|------------|-----------|--------------|--------------------------------------| | | Analyzed
by i | nscs | | | | | | | | | | | | | | Caliform MPN/mi | | | | | | | | | | | | | | | - pad - | 2 | - | 50 | | 100 | 09 | 50 | 30 | 25 | 77 | 7 | 10 | | | SCO3
N C C S | 0 | 0 | m | | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | | | | 72 | 70 | 37 | | 59 | 09 | 73 | 19 | 79 | 104 | 105 | 1110 | | | s ad - | 30 | 53 | 17 | | 19 | 23 | 20 | 21 | 20 | 778 | 98 | 35 | | Totol | solids
in ppm | | | | | | | | lolf | | | | 228 [£] | | | Other constituents | | | | | | | | ABS 0.0 As 0.00
PO ₁ 0.00 | | | | ABS 0.0 As 0.00 PO ₄ 0.45 | | | Silica
(SiO ₂) | | | | | | | | 15 | | | | 52 | | lian | Boron
(B) | 0.0 | 0.1 | 0.1 | | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | | Ē | Fluo-
ride
(F) | | | | | -01 | | | <u> </u> | - 0, | | <u> </u> | | | 5 | rrate
(NO ₃) | | | | | | | | 0.02 | | | | 0.00 | | parts p | Chlo-
ride
(CI) | 4.9 | 0,12 | 1.4 | | 1.3 | 1.4 | 3.1 | 0.07 | 2.4 | 5.4 | 6.3 | 0.22 | | Ē | Sul -
fate
(SO ₄) | | | | | .,,- | .,,,,, | - 40 | 0.29 | | - 140 | 0,0 | 1.06 | | constituents | Bicar-
bonate
(HCO ₃) | 107 | 98 | 41
0.67 | | 1.25 | 1.25 | 92 | 1.28 | 78
1.28 | 119 | 126
2.07 | 136
2•23 | | | Carban-1
Ote
(CO ₃) | 0000 | 00.00 | 00.00 | | 00.00 | 00.00 | 00.00 | 0.03 | 00.00 | 4
0.13 | 0.03 | 0000 | | Mineral | Potas- C
Sium
(K) | | | | | | | | 1.3 | | | | 0.09 | | | Sadium F
(Na) | 177 | 13 | 3.5 | | 6.2 | 7.1 | 8.5
0.37 | 8.2 | 7.6 | 15 | 17 | 1.22 | | | Magne-sium
(Mg) | | | - 1- | | | . 100 | | 2.4 | . 10 | | 1,,0 | 0.10 | | | Calcium (Ca) | 0 117 | o ₄₀ | 0.7 ¹ 4 | | 1.18 | 1.20 | o 97. | 18 | 1.28 | 2.08 | 2.10 | 2.10 | | | F 41.0 | 8.1 | 8.2 | 7.7 | | 7.7 | 7.8 | 8.1 | 7.8 | 88.0 | 8.8 | 0.00
0.01 | 88.0
9.1
3.10 | | oscific | canductance
(micramhas
at 25°C) | 208 | 194 | 98 | | 142 | 148 | 182 | 165 | 161 | 998 | 276 | 346 | | - v | 15 1 | 109 | 107 | 105 | | 8 | 83 | 26 | 66 | 100 | 107 | 109 | 107 | | | Dissalved
oxygen
ppm %S(| 10.7 | 11.2 | 12.3 | | 11.7 | 9.5 | 10.1 | 10.2 | 9.4 10 | 9.5 | 9.5 | 10.3 | | | 1 1 | 60 1 | 55 1 | 179 | ible | 13 1 | Lή | 51 1 | 56 1 | tp9 | 72 | 74 | 1 | | | Discharge Temp
in cfs in 0F | | | | Inaccessible | | | | 4 | 4200 | 2700 | 1970 | 1530 | | | and time
sampled
P.S.T. | 10/13/64 | 11/3 | 12/1
1250 | 1/65 | 2/8 | 3/8
1340 | 4/12
1425 | 5/10 | 6/7 | 7/19 | 8/2
1340 | 9/20 | a Field pH. b Labaratary pH. c Sum of calcium and magnesium in epm. d Heavy metals reported in table of "Spectragraphic Analyses of Surface Water" e Derived fram canductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); KLAMATH RIVER NEAR SEIAD VALLEY (STA. 2b) NORTH COASTAL REGION (NO. 1) | | 9 | | | | | | | | | | | | | |-------------------------|---|-------------|---------|--------------|-------------|------------|-----------------------|----------------------|---|-----------------------|---|-----------------------|---| | | Anolyzed
by i | SSSN | | | | | | | | | | | | | - | s bid - Coliform" 3 ity MPN/ml C. | | | | | | | | | | | | | | Į. | bid -
ity
mpgm | -1 | н | ω | 96 | 40 | 25 | 15 | 10 | 4 | m | 2 | a | | | Hardness
as CaCO ₃
Total N.C.
ppm ppm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Hord
os Co
DPm | 80 | 78 | 82 | 2 | 69 | 59 | 78 | 81 | 88 | 120 | 124 | 111 | | Per- | e od – | 33 | 31 | 34 | 56 | 22 | 29 | 53 | 24 | 56 | 32 | 37 | 39 | | Total | solved
solids
In som | | | | | | | | 135f | | | | 2571 39 | | | Other constituents | | | | | | PO _{1,} 0.20 | PO ₄ 0.20 | ABS 0.0 As 0.00
Po ₁ 0.05 | PO _{1,} 0.05 | PO _{1,} 0.35 | PO _{1,} 0.35 | ABS 0.0 As 0.01
PO ₁ 0.70 | | | Silico
(SiO ₂) | | | | | | | | 18 | | | | 58 | | lion | Boron (B) | 0.0 | 0.3 | 2.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 0.2 | 0.1 | | per million | Fluo-
ride
(F) | | | <u>U</u> | <u> </u> | | <u> </u> | | | | | | | | | Ni-
trate
(NO ₃) | 0.03 | 90:0 | 90.0 | 4.1
0.07 | 3.3 | 2.3 | 1.4 | 0.2 | 0.1 | 2.2 | 1.7 | 3.4
0.05 | | parts pe
equivolents | Chlo-
ride
(CI) | 6.5 | 0.18 | 5.7 | 3.3 | 2.1 | 0.06 | 5.1 | 0.06 | 5.4 | 8.5 | 10 | 0.24 | | = | Sul - Cl
fate (SO ₄) | 903 | ناه | .00 | mio | alo | alo
| | 17
0.35 0. | 200 | ထပြ | H 0 | 1.35 | | constituents | Bicar-
bonate
(HCO ₃) ((| 120
1.97 | 109 | 1.85 | 92
1.51 | 84
1.38 | 79 | 1.87 | 101 | 1.80 | 145
2.38 | 146
2.39 | 2.25 | | | Corbon - Bi | 0.00 | 0.00 | 90.0
10.0 | 00.00 | 0.00 | 00.00 | 00.00 | 3 1/0 | 0.50 | 0.03 | 0.13 | 00000 | | Minerol | Potos- Cor
Sium
(K) | olo | olo | 010 | 010 | 010 | olo | 010 | 2.1 3 | 00 | 410 | 410 | 0.10 | | | Sodium Pol | - 82 | 102 | 33 | 11
0.48 | 37 | 11 0.48 | 0.70 | 12 2 | 16
0.70 | 26 | 34 | 34
1.48
0 | | | Mogne- Sou | 18
0.78 | 16 0.70 | 0.83 | | 8.6 | 110 | 916
916 | 8.8
0.72
0. | 0 19 | 1 18 | 134 | 13
1-07
1-07
1-07 | | | Colcium Mo | 209. | .56 | p9.1 | 0 0 T | 1.30 | 1.18 | 2.68 | | 8 | 2.40 | 2.48 | 1.15 | | | ج ۱۵ عالی | 8.2 | 2.5 | 7.8 | 7.5 | 7.6 | 7:7 | 7.9 | 20.0 | 8.5 | 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 8.3 | 8 2 2 2 2 2 2 2 2 2 | | acific | (micromhos of 25°C) | 239 8. | 223 | 246 | 182 7 | 166 | 162 | 232 | 212 | 253 | 347 | 397 | <u>∞k∞</u> | | S | 1 7 | | | | | | | | | | | | | | | Dissolved
oxygen
ppm %Sc | 112 | .0 102 | 16 0. | 8. | .1 84 | .8 | 8.7 79 | 10.0 | .1 103 | 9.5 115 | 8.6 101 | 9.8 | | | | 62 10.4 | 50 11.0 | 0.11 44 | 39 11.8 | 10.1 | 77 77 | 8 87 | 54 10. | 58 10.1 | 73 9. | 70 8 | 779 | | | e i | 9 | 10 | | · · · | 4 | 7 | | | | | | | | | Dischorge Temp
in cfs in PF | 1570 | 2270 | 3660 | | | | 5990 | 4810 | 2430 | 1180 | 1300 | 5500 | | | Date
ond time
sompled
P.S.T. | 10/6/64 | 11/11 | 12/8 | 1/13/65 | 2/3 | 3/3
1345 | 1355 | 5/4 | 6/15 | 7/14 | 8/11 | 9/15 | a Field pH. b Loboratory pH. c. Sum of calcium and magnesium in epm. d. Heavy metals reported in table of "Spectrogrophic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravímetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Woter Branch (USGS); MAD RIVER NEAR ARCATA (STA. 6a) NORTH COASTAL REGION (NO.1) | | | Andlyzed
by i | USGS | | | | | | | | | | | | |-------------------|----------------------|---|---------------|----------------|----------------|--------------|--------------|-------------|--------------|---|-------|--------------|-------------|---------------------------------------| | | | bid - Coliform Analyzed | Median
8.4 | Maximum
62. | Minimum
2.3 | | | | | | | - | | | | | 1 | bid –
ity
In ppm | - | -7 | 360 | | 150 | 55 | 100 | 25 | N | m | CI . | н | | | | P N N | N | - | IV. | | N | - | 10 | 5 | 77 | <u>-</u> | 10 | - | | | | | 87 | 82 | 8 | | 53 | 78 | 59 | 79 | 103 | 125 | 126 | 124 | | | | pos
L pos | 10 | 10 | 179 | | 77 | 10 | 14 | 11 | 10 | 7 | 10 | 6 | | | Total | solved
solved
in ppm | | | | | | | | 92°£ | | | | 1451 | | | | Other constituents d | | | | | | | | ABS 0.0 As 0.00
Po ₁ 0.00 | | | | ABS 0.0 As 0.00 PO ₁₁ 0.00 | | | | Silica
(SiO ₂) | | | 1 | | | | 1 | 7.6 | - | | 1 | 0.6 | | uo | per million | Boron
(B) | 0.0 | 0.3 | 0.1 | | 0.0 | 0.0 | 0.5 | 0 | 0.2 | 0.0 | . 0 | 0.0 | | ili e | per n | Fluo-
ride
(F) | | | | | | | | | | | | | | ports per million | equivalents | Ni~
trate
(NO ₃) | | | | | | | | 0.05 | | | | 0.00 | | | equi | Chlo-
ride
(CI) | 2.4
0.07 | 2.5 | 2.5 | | 1.6 | 2.7 | 2.4
0.07 | 2.5 | 2.0 | 3.1 | 3.4 | 0.00 | | | ts in | Sul -
fote
(SO ₄) | | | | | | | | 10. | | | | 0.31 | | | nstituen | Bicor-
banate
(HCO ₃) | 104 | 92 | 30 | | 62
1.02 | 1+11 | 1.03 | 86
1.41 | 11.92 | 136 | 141 2.31 | 141
2.31 | | | Mineral constituents | Carban-
ate
(CO ₃) | 00.00 | 0.0 | 0.00 | | 0.00 | 0.00 | 00.0 | 20.07 | 20.07 | 0.13 | 3 0.10 | 0.03 | | | Σ | Potas-
sium
(K) | | | | | | _ | | 0.7 | | | | 0.03 | | | | Sadium
(Na) | 4.5 | 0.13 | 3.3 | | 3.8 | 4.2 | 4.4 | 0.20 | 5.3 | 7.1 | 6.1 | 0.24 | | | | Magne-
sum
(Mg) | | | | | | | | 4.6 | | | | 3.4 | | | | Calcium
(Co) | 1.74°C | 1.64°C | 0.60° | | 1.06 | 1.500 | 1.18 | 24. | 2.06 | 2.50° | 2.52 | 2.50°C | | - | | F & ID | 7.9 | 2.2 | 7.5 | | 4.5 | 7:7 | 7.6 | 7.8 | 8 8 1 | 8.0 | © ©
1.√. | 2 2 | | | Specific | conductance
(micromhos
at 25°C) | 194 | 183 | 16 | | 121 | 170 | 135 | 173 | 219 | 259 | 262 | 257 | | | | 151 | 103 | 75 | 85 | | 97 | 83 | 89 | 87 | 66 | 101 | 102 | 100 | | | | Disso | 0. | 2.0 | 9.5 | | 11.7 | 0.6 | 4.6 | 2. | 6.6 | 9.5 | 9.5 | o,
n, | | | | Temp
in of | 65 | 82 | 15 | sible | 45 | 54 | 56 | 62 | 3 | 69 | 02 | 65 | | | | Dischorge Temp
in cfs in of | 96 | 184 | 11,100 | Inaccessible | 1,600 | 418 | 1,100 | 425 | 172 | 19 | 69 | T 17 | | | | and time
sompled
P.S.T. | 10/13/64 | 11/3 | 12/1
1630 | 1/65 | 2/10
1605 | 3/8
1550 | 4/12
1750 | 5/10
1730 | 6/7 | 7/19
1745 | 8/2 | 1800 | a Field pH. b Loboratory pH. c Sum of calcium and magnesium in epm. d Heavy metals reaarted in table of "Spectragraphic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); MATTOLE RIVER NEAR PETROLIA (STA. 78) NORTH COASTAL REGION (NO.1) | | Anolyzed | by i | USGS | | | | | | | | | | | | | | |----------------------|--------------------|--|-------------|------------|------------|--------------|------------|------------|--------------|---|-----------|--------------|-------------|---|------|---| | | Coliforn | In ppm MPN/mi | | | | | | | | | | | | | | | | | 201 | n ppm | ٦ | 77 | 160 | | 100 | 0 | 45 | 35 | 15 | Н | 0 | Н | | | | | o Sau | N C | 6 | 22 | ľ | | 4 | 0, | 10 | 2 | _ | ω | ∞ | 15 |
 | | | | | | 115 | 102 | 43 | | 99 | 78 | 72 | 17 | 42 | 115 | 118 | 127 |
 | | | | Per- | - pog - | 16 | 15 | 53 | | 19 | 15 | 17 | 16 | 15 | 17 | 177 | 13 |
 | | | | dis- | solids
in ppm | | | | | | | | 105f | | | | 169 ^f | | | | | | Other canstituents d | | | | | | | | ABS 0.0 As 0.00
Po ₁ 0.00 | | | | ABS 0.0 As 0.00
PO ₄ 0.02 | | | | | | Silico
(SiO ₂) | | | | | | | | i. | | | | 9.8 | | | | اء | ugilion
Willion | Boron
(B) | 0.1 | 0.1 | 0.0 | | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | | | | mallion | E Be | Fluo-
ride
(F) | | | | | | | | | | | | | | 1 | | انت | equivalents | rrote
(NO ₃) | | | | | | | | 0.02 | | | | 0.00 | | | | d | eduiv | Chlo-
ride
(Ct) | 4.9 | 4.4 | 3.1 | | 3.7 | 3.3 | 3.2 | 3.4 | 3.0 | 0.11 | 4.6 | 4.8
0.14 | | | | 2 | _ | Sul -
fate
(SO ₄) | | | | | | | | 0.31 | | | | 27. | | | | Mineral constituents | | Bicor-
bonote
(HCO ₃) | 125
2.05 | 94
1.54 | 46
0.75 | | 68
1.11 | 84
1.38 | 76 | 76 | 104 | 126
2.07 | 126
2.07 | 2.15 | | | | eral con | | Corbon-
ofe
(CO ₃) | 2 0.07 | 2
0.07 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.07 | 1
0.03 | 2
0.07 | 4
0.13 | 3 | | | | W | | Potas-
sium
(X) | | | | | | | | 1.1 | | | | 1.3
0.03 | | | | | | Sodium
(No) | 9.8 | 8.5 | 5.9 | | 6.6 | 6.5 | 6.7 | 6.5 | 0.33 | 8.4 | 8.5
0.37 | 9.1 | | | | | | Magne-
sium
(Mg) | | | | | | | | 3.3 | | | | 6.6 |
 | | | | | Calcium
(Co) | 2.30 | 2.04° | 98.0 | | 1.20 | 1.56 | 1.44 | 23. | 1.88 | 2.30 | 2.36° | 10. | | | | L | _ | F alb | 7.8 | 7.6 | 7.3 | | 7.4 | 8.0 | 8.0 | 8.5 | 8.3 | 88.4 | 8.5 | 8.3 | | _ | | | Specific | conductonce
(micromhos
of 25°C) | 592 | 239 | 115 | | 149 | 181 | 174 | 169 | 217 | 257 | 792 | 281 | | | | | | | 100 | 100 | 8 | | 88 | 8 | 88 | 96 | 93 | 130 | 118 | 107 | _ | | | | | Disso
oxy
oxy | 10.0 | 10.6 | 10.7 | | 10.5 | 10.0 | 10.0 | 9.6 | 9.5 | 11.5 | 10.4 | 10.5 | | | | | | Te and | 09 | 55 | 51 | sible | 917 | 52 | 53 | 99 | 61 | Ę | 72 | 62 | | | | | | Dischorge Temp
in cfs in OF | 77 | 142 | 0024 | Inaccessible | 986 | 322 | 562 | Est. | EST. | Est. | EST. | 33 | | | | | | ond time
sompled
P.S.T. | 49/41/01 | 11/5 | 12/3 | 1/65 | 2/11 | 3/9 | 4/13
1010 | 5/11 0930 | 6/8 | 7/21
1105 | 8/4
0111 | 9/22 | | | o Field pH. b Laboratory pH. d Heavy metals reported in table of "Spectrographic Analyses of Surface Water" c Sum of colcium and magnesium in epm. Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. g Gravimetric determination. h Annuol median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Loboratories, i Minerol analyses made by United States Geological Survey, Quality of Water Branch (USGS); NORTH COASTAL HEGION (NO. 1) MILL CREEK NEAR COVELO (STA. 5e) | | | Anolyzed
by i | USGS | | | | | | | | | | | | |-------------------|--------------|---|-------------|-------------|-------------|-------------|-------------|--------|--------------|--------------|---------|-------------|-------------|-------------| | - | | E I | us | | | | | | | | | | | | | | | Hordness bid - Coliform os CoCO ₃ ify MPN/mi | | | | | 10 | m | -10 | m | CI | | | | | - | Ţ | P C C E | | | | | 15 | | 25 | | | | | | | | | Hordness
os CoCO ₃
Totol N C. | | | | | 94 1 | | -1 | 0 | 9 | | | | | - | | sod - mul | | | | | 13 | 11 141 | 13 131 | 11 140 | 13 166 | | _ | | | - | - TO | solids
in ppm | | | | | 9 ⊢1 | | | 94 | | _ | | | | - | To | | | | | | 125 | | | 163 | | | | | | | | Other constituents d | | | | | | | | | |
 | | | | | Silico
(SiO ₂) | | | | | 13 | | | 15 | | | | | | _ | Illian | 5 | | | | | 0:1 | 0:0 | 0.3 | 0.1 | 0.0 | | | | | millio | per million | Fluo-
ride
(F) | | | | | | | | | | | | | | ports per million | equivalents | Ni-
trate
(NO ₃) | | | | | 0.05 | | | 0.03 | 0.02 | | | | | ٩ | equiv | Chlo-
ride
(CI) | | | | | 2.4
0.07 | 4.3 | 3.6 | 0.11 | 4.4 | | | | | | Li S | Sul -
fote
(SO ₄) | | | | | 0.35 | | | 13 | | | | | | | constituents | Bicor-
bonote
(HCO ₃) | | | | | 106 | 161 | 2.59 | 171
2.80 | 3.29 | | | | | | Minerol co | Corbon-
ote
(CO ₃) | | | | | 4.0 | 5.0 | 00.00 | 0.00 | 4.0 | | | | | | M | Potos-
sum
(K) | | | | | 0.03 | | | 1.0 | | | | | | | | Sodium
(No) | | | | | 6.0 | 8.1 | 8.7
0.38 | 8.3 | 11 0.48 | | | | | | | Mogne-
sium
(Mg) | | | | | 0.88 | | | 15 | | | | | | | | Colcium
(Co) | | | | | 20 1.00 | 2.82 | 2.62 | 31 | 3.32 | | | | | | | E 010 | | | | | 8.8 | 8-1-8 | 8.1 | 0 0 | 8.5 | | | | | | Specific | (micramhos
ot 25°C) | | | | | 203 | 292 | 277 | 292 | 342 | | | | | | | Dissolved of oxygen (Coppm %0.50t | | | | | 76 | 77 | 85 | 101 | 80 | | | | | | | Disso
oxy
ppm | ~ | red. | rd . | red. | 11.4 | 4.8 | 0.6 | 9.5 | 6.2 | mi | rel . | rd . | | | | Dischorge Temp
in cfs in ⁰ F | Not Sampled | Not Sampled | Not Sampled | Not Sampled | 717 | - 50 | 52 | - 62 | 80 | Not Sampled | Not Sampled | Not Sampled | | | | Dote
ond time
sampled
P.S.T. | 10/64 | 11/ | 12/4 | 1/65 | 2/2 | 3/11 | 4/15
1100 | 5/13
0930 | 6/9 | 1/22 | 8/5 | 9/23 | a Field pH. b Loboratory pH. c. Sum of calcium and magnesium in epm. d. Heavy metals reported in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Grovimetric determination. h Annuol median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Gealogical Survey, Quality of Water Branch (USGS); ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued) OUTLET CREEK NEAR LONGVALE (STA. 5b) | | Analyzed
by i | SS | | | | | | | | | | | | |------------------------|--|-----------------|---------|-------------|--------------|-----------------------|----------|--------------|--|-------|-------------|-------------|--------------------------------------| | 4 | E E | SDSU | | | | | | | | | | | | | | bid - Coiform" ity MPN/ml | | | | | | | | | | | | | | ļ
Ž | - pid
- ity
in ppm | | 7 | 10 | | 15 | - | 000 | m | | | п | | | | Hordness
as CaCO ₃
Total N.C. | 137 12 | 145 10 | 5 04 | | 24 0 | 75 1 | 51 0 | 0 92 | 0 26 | 121 0 | 134 2 | 1142 | | | sod - as Co | | | | | | 18 | 18 | 19 | 18 | 18 | 21 1 | 82 | | itol
p, | solved so
solids
in spm | 21 | 54 | 25 | | 18 | | 7 | 113f 1 | - | | - CU | 1976 | | ٩ | كتنف | | - | | | | | | | | | | | | | Other constituents | | | | | Po _{1,} 0.05 | | | ABS 0.0 As 0.00 PO _{\(\psi\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\} | | | | ABS 0.0 As 0.00 PO ₄ 0.01 | | | Silica
(SiO ₂) | | | · | | <u></u> | | | 113 A | | | | 8. | | uoi | 5 | 2.5 | 3.6 | 2.0 | | 0.2 | 4.0 | 0.1 | 7.0 | 9.0 | 1.2 | 1.9 | 0.00 | | millian
per million | Fluo-
ride
(F) | | | | | | | | | | | | | | 1 20 1 | _ | | | | | 0.05 | | | 1.2 | | | | 00.00 | | ports p | Chio-
ride
(CI) | 06.0 | 30 | 3.5 | | 0.08 | 6.2 | 2.4
0.07 | 5.4 | 7.6 | 14
0.39 | 24 | 0.73 | | | Sul -
fote
(SO ₄) | 0 | Mo_ | | | 0 | <u> </u> | <u>"</u> 0 | 0.17 | 10 | 174 | <u>_0 0</u> | 0.21 0 | | | Bicor-S
bonate (
(HCO ₃) ((| 2.39 | 161 | 146
0.75 | | 80.1 | 90 | 62 | 92 | 1.37 | 137
2.25 | 147
2.41 | 2.62 | | constituents | Carbon-Bi
ate
(CO ₃) (H | | | | | | | | | | | | | | Mineral | S E | 0.10 | 2 0.07 | 000 | _ | 000 | 000 | 00.0 | 2 0.07 | 20.07 | 0.20 | 7.0.23 | 0000 | | | Potas-
sium
(K) | | | uls | | - mlm | - امام | | 0.00 | alm. | lou | | 10:00 | | | Sodium
(No) | 17
0.74 | 21 0.91 | 6.1 | | 5.3 | 7.6 | 0.22 | 8.0 | 9.9 | 12 0.52 | 16
0.70 | 0.65 | | | Mogne
Sium
(Mg) | | | | | | | | 5.7 | | | υ. | 13 | | | Calcium Mogne-
(Ca) Sium
(Mg) | 2.74 | 2.90 | 0.81 | | 1.08 | 1.50 | 1.02 | 21 | 1.90 | 27.2 | 2.68 | 36 | | | E alo | 88.8 | | 7.9 | | 7.4 | 8.0 | 7.4 | 8.5 | 808 | 88 | 9.6 | 8.1 | | 1 | conductance
(micromhas
at 25°C) | 346 | 384 | 109 | | 128 | 181 | 123 | 182 | 223 | 285 | 327 | 34.3 | | | | 66 | 111 | 26 | | | 93 | 83 | 98 | 130 | 98 | 8 | 8 | | | Dissolved oxygen ppm %Sol | 9.5 | 10.9 | 10.7 | 0) | | 10.2 | 9.5 | 8.7 | 11.0 | 4.00 | 8.0 | m
œ | | | Temp
in oF | 1 19 | 59 | 9† | Inaccessible | 64 | 20 | 64 | 89 | 73 | 72 | 72 | 9 | | | Discharge Temp | | | 099 | Inacce | | 73 | 505 | 19 | ήZ | 1.5 | €. | 0. | | | Date and time sompled P.S.T. | 10/15/64 1015 | 11/6 | 12/4 | 1/65 | 2/2 | 3/11 | 4/15
0945 | 5/13 | 6/9 | 7/22 | 8/5
0740 | 9/23
0830 | o Field pH. b Laboratory pH. c. Sum of colcium and magnesium in epm. d. Heavy metals reparted in table of "Spectrographic Analyses of Surface Water". e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); Gravimetric determination. NORTH COASTAL REGION (NO. 1) REDWOOD CREEK AT ORICK (STA. 3b) | | Anolyzad
by i | USGS | | | | | | | | | | | | |---|---|------------|-------|--------------|-------------|------------|-------------|-------|--------------------------------------|-------|------------|------------|-------------------------------| | | bid - Coliform ity MPN/ml | | | | | | | | | | | | | | Į. | bid -
ity
In ppm | H | m | 550 | | 260 | 55 | 150 | 55 | 9 | н | 'д | m | | | N OO | 2 | 13 | 5 | | 9 | 10 | 11 | 6 | 13 | 15 | 13 | 13 | | | | 09 | 7.7 | 25 | | 7 5 | - 28 | 50 | 59 | 74 | 78 | 84 | | | - | g sod - | 16 | 13 | 27 | | 13 | 15 | 27 | 2 | 77 | 12 | 12 | 1 | | Totol | solved
solved
solids
in ppm | | | | | | | | 87 [£] | | | | 108f | | | Other constituents d | | | | | | | | ABS 0.0 As 0.00 PO ₁ 0.10 | | | | PO _{1,} 0.03 As 0.00 | | | Silico
(SiO ₂) | _ 1 | | | | -1 | -1 | _1 | 7.6 | | | _1 | 9 | | million
per million | Baron
(B) | 0.0 | 0.1 | 0.2 | | 0.0 | 0.0 | 0.0 | 0:0 | ं। | 0.0 | 0.0 | 0.1 | | per r | Fluo-
ride
(F) | | | | | | | | | | | | | | ports per million
equivolents per mill | Ni-
trote
(NO ₃) | | | | | | | | 1.0 | | | | 9.0 | | equiv | Chlo-
ride
(Ct) | 6.0 | 4.7 | 1.8 | | 2.5 | 2.4
0.07 | 2.8 | 3.8 | 3.9 | 5.2 | 6.0 | 0.18 | | ni s | Sul -
fote
(SO ₄) | | | | | | | | 0.0 | | | | 0.33 | | constituents | Bicar-
bonate
(HCO ₃) | 67
1.10 | 1.21 | 24
0.39 | | 48
0.79 | 59
0.97 | 60 | 00.1 | 1.21 | 82
1.34 | 86
1.41 | 78
1.25 | | Mineral con | Corbon-
ote
(CO ₃) | 00.00 | 00.00 | 0.00 | | 00.00 | 00.00 | 00.00 | 00.0 | 00.00 | 1
0.03 | 0.00 | 00.0 | | Mın | Potos-
Sium
(K) | | | | | | | | 0.0 | | | | 20.00 | | | Sodium
(No) | 5.2 | 5.2 | 2.9 | | 3.2 | 3.7 | 3.8 | 3.8 | 0.20 | 5.6 | 5.5 | 0.25 | | | Mogne-
Slum
(Mg) | | | | | | | | 2.2 | | | | 0.19 | | | Colcium
(Co) | 1.20 | 1.48 | 05.0 | | 06.0 | 1.16 | 1.20 | 20 | 1.48 | 1.68 | 1.63 | 1.35 | | | E ala | 7.2 | 2.1 | 7.4 | | 7.2 | 7.5 | 7.5 | 7.4 | 4.6 | 0.1
1.0 | 1.0 | alic | | Specific | conductonce
(micromhos
at 25°C) | 145 | 175 | 99 | | 106 | 136 | 136 | 136 | 168 | 1,90 | 192 | 181 | | 1 | 151 | 98 | 96 | 984 | | 77 | 8 | 87 | % | 95 | 76 | 87 | 88 | | | Dissolved
oxygen
ppm %S | 80.00 | 10.0 | 9.3 | | 8.9 | 10.6 | 7.6 | 9.5 | 4.6 | 9.5 | 8.6 | 7.80 | | | Temp
in oF | 58 | 57 | 52 | ssible | 1,3 | 52 | 51 | 49 | 58 | 69 | 61 | 65 | | | Dischorge Temp | 19 | 68 | 0666 | Inaccessibl | 706 | 410 | 430 | 585 | 160 | 24 | 25 | ਹੈ ਹੈ | | | ond time
sompled
P.S.T. | 10/12/64 | 11/3 | 12/2
1120 | 1/65 | 2/10 | 3/9 | 1,714 | -71- | 6/7 | 7/20 | 8/3 | 9/21
1300 | a Field pH. b Loboratory pH. c Sum of calcium and magnesium in epm. d Heavy metals reparted in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); TABLE D-2 (Continued) ANALYSES OF SURFACE WATER SALMON RIVER AT SOMESBAR (STA. 2a) NORTH COASTAL REGION (NO. 1) | | Anolyzed
by i | USGS | | | | | | | | | | | | | |---|--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|-------------|-------------|-------------|---|---| | | Hordness bid Coliformh A os CoCO ₃ ity MPN/mi | | | | | | | | | | | | | | | - | F Col | - | | | | | | | 15 | | | | | | | - | 000
N.C. | | | | | | | | CI CI | | | | | | | | | | | | | | | | 38 | | | | | | | | L Pos | | | | | | | | 6 | | | | | | | Total | solids
in ppm | | | | | | | | 51 [£] | | | | 110 f | l | | | Other constituents d | | | | | | | | ABS 0.0 As 0.00
PO ₁ 0.04 | | | | ABS 0.0 As 0.00
Po _t 0.04 | | | | Sifica
(SiO ₂) | | | | | | | | 12 | | | | 16 | | | Hion |
Boron
(B) | | | | | | | | 0:0 | | | | 0.0 | | | million
per million | Fluo-
ride
(F) | | | | | | | | | | | | | | | ports per million
equivalents per mill | 1 _ | | | | | | | | 1.0 | | | | 0.02 | | | e quive | Chlo-
ride
(CI) | | | | | | - | | 0.0 | | | | 0.00 | | | .5 | Sul -
fote
(SO ₄) | | | | | | | | 3.0 | | | | 7.0 | | | constituents | Bicor-
bonote
(HCO ₃) | | | | | | | | 44 | | | | 95
1.56 | | | Mineral con | Carbon-
ote
(CO ₃) | | | | | | | | 00.00 | | | | 0.00 | | | Min | Potas-
Sium
(K) | | | | | | • | | 0.08 | | | | 0.05 | | | | Sodium
(No) | | | | | | | - | 0.08 | | | | 3.8 | | | | Mogne-
sium
(Mg) | | | | | | | | 0.15 | | | | 3.5 | | | | Colcium
(Co) | | | | | | | | 12. | | | | 27 | | | | Z alo | | | | | | | | 4.7 | | | | 0 00
0 00 | | | Specific | conductonce
(micromhos | | | | | | | | 83 | | | | 177 | | | | olved (r | | | | | | | | 95 | | | | 102 | | | | Oiss
ox
mqq | | | | | | | | 10.2 | | | | 9.6 | | | | Temp
in OF | led | led | gled | led | led | gled | pled | 53 | led | pled | pled | 11 9 | | | | Dischorge Temp
in cfs in OF | Not Sampled 2800 | Not Sampled | Not Sampled | Not Sampled | 174 | | | | Dote
ond time
sompled
P.S.T. | 10/64 | 11/ | 12/ | 1/65 | 2/ | 3/ | /11 | 5/10 | /9 | /1 | 8/ | 9/20 | | a Field pH. b Laboratory pH. c. Sum of calcium and magnesium in epm. d. Heavy metals reported in table of "Spectragraphic Analyses of Surface Water". Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. Grovimetric determination. h Annuol medion and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); -72- ANALYSES OF SURFACE WATER NORTH COASTAL REGION (No. 1) TABLE D-2 (Continued) SCOTT RIVER NEAR FORT JONES (STA. 1b) | | Anolyzed
by i | | USGS | | | | | | | | | | | | |--|------------------------------------|----------|---------------|----------------|-----------------|---------|-------------|------|-------------|---|------------|-------|--------------|--------------------------| | | MPN/ml | | Medium
9.1 | Maximum
230 | Minimum
0.13 | | | | | | | | | | | , | - bid
- ti
mpgn | | | m | 4 | 047 | 740 | 15 | 10 | 10 | <i>-</i> # | co | - | н | | | -0 - | E dd | 0 | ч | - | | 5 | 0 | m | 0 | 0 | m | C) | 0 | | L. | | E dd | 142 | 141 | 87 | 16 | % | 8 | 80 | 192 | 82 | 141 | 148 | 145 | | | 00 m | | <u></u> | _ | 00 | 00 | 00 | 6 | 6 | 52 | <u>-</u> | _ | <u></u> | ∞ | | Total | dis-
solved
solids
in ppm | | | | | | | | | 285f | | | | 1684 | | | Other constituents | | | | | | | | | ABS 0.0 As 0.01
Po ₄ 0.45 | | | | ABS 0.0 AS 0.00 | | | n Silico
(SiO ₂) | 4 | | | | | | | | 04 | | | | 19 | | lion | - Boron | | 0 | 0.0 | 0.1 | 0.0 | 0:0 | 0:0 | 0.0 | 7.0 | 0: | 0.0 | 0.0 | 0 | | per p | 3.50 | - | | | | | | | <u>.</u> | | | | | | | ports per million
equivolents per mil | rote d | | | | | | | | | 0.02 | | | | 2.1 | | inge | 0 - | \dashv | 3.8 | 0.0 | 0.06 | 0.03 | 0.03 | 0.03 | 0.03 | 16 | 1.9 | 3.5 | 4.4 | 3.7 | | 5 | Sul -
fote | | | | | | | | | 9.0 | | | | 0.8 | | stituent | Bicar-
bonote | (Engul) | 162 | 165
270 | 105 | 110 | 109 | 110 | 104 | 254 | 1.54 | 168 | 164 | 17th 2 - 85 | | Mineral constituents | Corbon | 16031 | 0.20 | 3 0.10 | 0000 | 00.00 | 0.03 | 0.00 | 0.0 | 10 | 4 0.13 | 00.00 | 7.0.23 | 2.00.00T | | N N | Potas- | (W) | | | | | | | | 2.3 | | | | 8.0.0 | | | Sodium
(No) | | 5.4 | 5.1 | 3.7 | 3.6 | 3.8 | 3.9 | 3.8 | 30 | 3.1 | 0.20 | 5.4 | 0.26 | | | Mogne- | (fin) | | | | | | | | 15 | | | | 1.35 | | | Colcium
(Co) | | 2.84 | 28.2 | 1.74 | 1.82 | 1.92 | 1.80 | 1.70 | 52
2.59 | 1.64 | 2.82 | 2.96 | 1.55 | | | 돌하 | o | 8.3 | 7.9 | 8.2 | 8.2 | 8.3 | 3.5 | 8.0 | 88.2 | 7.7 | 8 8 | 8.1 | 0.7. | | | conductonce
(micromhos | | 291 | 277 | 187 | 187 | 186 | 181 | 179 | 452 | 174 | 281 | 290 | 292 | | | | % SQ1 | 126 | 88 | 88 | 18 | 47 | 78 | 85 | % | 97 | 124 | 134 | 16 | | | | mdd | 10.8 | 9.5 | 10.6 | 7.6 | 8.3 | 6.8 | 8.8 | 9.6 | 0.6 | 9.7 | 10.5 | 7.11 | | | ea
o e
o e | | 99 | 64 | 97 | 42 | 73 | 877 | 50 | 75 | 59 | 75 | 77 | 69 | | | Dischorge
in cfs | | 53 | 112 | 312 | 2650 | 5200 | 1020 | 700 | 1340 | 588 | 125 | 76 | رب
س | | | Dote ond time sompled | 7.3.1. | 10/5/64 | 11/10 | 12/7 | 1/12/65 | 2/2
1500 | 3/2 | 4/6
1520 | 5/3 | 6/14 | 7/14 | 8/10
1500 | 9/1 ⁴
1515 | o Field pH. b Loborotory pH. c. Sum of calcium and magnesium in epm. d. Heovy metals reported in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); ANALYSES OF SURFACE WATER TABLE D-2 (Continued) SHASTA RIVER NEAR YREKA (STA. 1a) NORTH COASTAL REGION (NO. 1) | | Anolyzed
by i | USGS | | | | | | | | | | | | |----------------------|--|-------------|-----------------|----------------|-------------|-------------|------|----------------|---|------------|--------------|------------|---------------------------------| | | Hordness bid - Coliformh A os CoCO3 Ity MPN/ml | Median 1 | Maximum
2400 | Minimum
5.0 | | | | | | | | | | | - | 7 - Y- Edg | 1
6
M | 1
Z 0/ | 7 T | 20 | 10 | | 16 | 10 | 10 | m | cv . | N | | | 8 0 X | ₩aa o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Hordness
os CoCO ₃
Total N.C. | 216 | 205 | 196 | 187 | 190 | 191 | 230 | 192 | 525 | 231 | 234 | 5256 | | | Cent
Cent
ind | 29 | 33 | 31 | 23 | R | 25 | 35 | 25 | 28 | 27 | 62 | 28 | | 2 2 2 | solids
in ppm | | | | | | | | 285 f | | | | 360 £ | | | Other constituents d | | | | | | | | ABS 0.0 AS 0.01
PO ₄ 0.45 | | | | ABS 0.0
PO ₄ 0.18 | | | Silico
(SiO ₂) | | | | | | | | 위 | | | | 2 | | e le | 5 | 0.4 | 0.5 | 7.0 | 0.4 | 0.3 | 0.4 | 6.0 | 0.4 | 0.5 | 0.5 | 9.0 | 9:0 | | mullion
million | Fluo-
ride
(F) | | | | | | | | | | | | | | ports per million | | | | | | | | | 1.1 | - | | | | | po | Chlo- | 26 | 29.0 | 24 | 15 | 13
0.37 | 17 | 26 | 16 | 26 | 25 | 26 | 0.73 | | <u> </u> | Sul -
fore
(SO.) | | | | | | | | 9.0 | | | | 0.17 | | Mineral constituents | Bicar-
bonate
(HCO ₃) | 291 | 762 | 264 | 247
4.05 | 3.92 | 256 | 340 | 254 | 280 | 304 | 304 | 5.15 | | ral cons | Corban-
afe
(CO3) | \neg | 0.33 | 0.53 | 8 | 0.33 | 8 | 0.33 | 0.33 | 26
0.87 | 0.60 | 22
0.73 | 0.43 | | Mine | Potos- C
Sium
(K) | | ,- | .,,0 | | | | | 0.00 | - | | .,,, | 0.08 | | | Sodium (No) | 41
1.78 | 2.00 | 1.74 | 26 | 25 | 30 | 56 | 30 | 1.74 | 40 | 43 | 1.83
1.83 | | | Mogne-
muis
(M) | | | | | | | | 1.25 | | | | 2.92 | | | Calcium (Ca) | 4.32 c | 0T-1 | 3.92 | 3.74 | 3.80 | 3.82 | 09.4 | 52 c 2.59 | 4.58 | 4.62 | g 89° t | 1.00 | | | ¥ 81.0 | | 8.5 | 800 | 2000 | 8.6 | 21.2 | 00 00
00 00 | 8 8 | 7 80 | 0 00
0 00 | 4.8 | ωω
ωνο | | | conductance
(micromhos | 562 | 584 | 515 | 044 | 421 | 994 | 919 | 452 | 561 | 595 | 578 | 567 | | | | 76 | 66 | 86 | 92 | 92 | 779 | 69 | 8' | 92 | % | 76 | 102 | | | Dissolved
oxygen | 9.5 | 11.1 | 10.9 | 9.5 | 8.8 | 7.3 | 9.7 | 9.6 | 6.8 | 7.3 | 0.8 | 6.9 | | | Temp
in oF | 58 | 45 | 977 | 04 | 43 | 77 | 1:1 | 54 | 179 | 68 | 89 | 62 | | | Dischorge Temp | 112 | 188 | 196 | 076 | 510 | 314 | 664 | 141 | 141 | 69 | 43 | 8 | | | ond time
sampled
P.S.T. | 10/6/64 | 11/11 | 12/8 | 1/13/65 | 2/3
0845 | 3/3 | 0480 | 5/4
0735 | 6/15 | 7/14 | 8/11 | 9/15
0830 | a Field pH. b Loboratory pH. c. Sum of calcium and magnessum in epm. d. Heavy metals reported in table of "Spectrographic Anolyses of Surface Water" Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. g Gravimetric determination. h Annual median and range, respectively. Colculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); TABLE D-2 (Continued) ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) SMITH RIVER NEAR CRESCENT CITY (STA. 3a) | | Analyzad
by i | | USGS | | | | | | | | | | | | |------------------------|---|----------|----------------|---------------|-----------------|--------------|------------|--------|--------------|---|--------------|-----------|-------------|-----------------| | | bid - Coliform A | | Median 1
15 | Maximum
50 | Minimum
0.23 | | | | | | | | | | | - | - Pi
Thy
Ppm ₹ | | 1 Me | 1 Ma | 35 Mi | | 20 | 04 | 12 | 30 | 15 | m | 1 | н | | | CO3 | m d d | N | ري
د | 7 | | CI CI | -1 | 2 | CI CI | - | -3 | <u>۸</u> | t- | | | | 200 | 77 | 65 | 38 | | 45 | 52 | 55 | 5,4 | 29 | 83 | 88 | % | | | od - | | 00 | ω | 10 | | 0, | 10 | 00 | ∞ | <u></u> | 00 | 7 | ~ | | Total | solved
solids
in pom | | | | | | | | | 63 f | | | | 101. | | | Other constituents | | | | | | | | | ABS 0.0 As 0.00
Po _b 0.10 | | | | ABS 0.0 As 0.00 | | | Silica
(SiO ₂) | | | | | | | | | 13 | | | | 13 | | llion | Boron Silica
(B) (SiO ₂) | | 0 | 0.1 | 0.0 | | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0:0 | 0,0 | | million
per million | Fluo- | | | | | | | | | | | | | | | m | Ni- | (MO3) | | | | | | | | 1.7 | | | | 0.02 | | gorts pe | Chla- | [2] | 0.08 | 2.5
0.07 | 1.4 | | 1.8 | 1.4 | 20.0 | 1.7 | 2.1 |
215 | 8.0 | 888 | | C1 | Sul -
fote | (504) | | | | | | | - | 0.08 | | | | 0.17 | | constituents | Bicor-
bonofe | 18 CO. | 1.38 | 1.20 | 45 <u>0.69</u> | - | 52
0.85 | 1.02 | 1.07 | 64 | 1.26 | 91 1.49 | 1.62 | 1.72 | | | Carbon- | T | 00.0 | 00.0 | 00.0 | | 000 | 00.00 | 0000 | 00.00 | 00.00 | 2
0.07 | 1 0.03 | 0.07 | | Mineral | Potas- C | \dashv | | | _ | | | | | 0.03 | | | | 6.00 | | | Sodium (No) | | 0.13 | 0.12 | 0.08 | | 0.00 | 2.6 | 2.2 | 2.1 | 2.4 | 3.5 | 3.2 | 0.14 | | | Magne- S | (gw) | | | | | | | | 0.86 | | | | 1.07 | | | Calcium (Co) | | 1.42 c | 1.30 | ° 97.0 | | 06.0 | 1.04 c | 1.10 | 8.4 | 1.34 | 1.64 | 1.76 | 0.85 | | | F ala | | 8.1 | 7.5 | 7.3 | | 2.5 | 843 | 9.0 | 8.0.8 | 0/0 | 88.1 | 00 00 m | 0.00
1.14. | | Specific | (micromhos
at 25°C) | | 146 | 133 | 81 | | 95 | 110 | 113 | 113 | 137 | 167 | 177 | 193 | | | | 70207 | 105 | 8 | 105 | | 87 | 101 | 11 | 98 | 100 | 100 | 68 | 8 | | | 0 5 1 | Egg | 10.3 | 10.2 | 11.8 | | 10.8 | 9.11 | 9.1 | 8.6 | 10.3 | 9.6 | 8.9 | 8.0 | | | in or | | 62 | 55 | 51 | sible | 143 | 617 | 24 | 09 | 58 | 179 | 99 | 9 | | | Discharge Temp
in cfs in oF | | 176 | 298 | 25000 | Inaccessible | 3270 | 1970 | 1680 | 1400 | 780 | 345 | 295 | 550 | | | some time | 7.3.1. | 10/15/64 | 11/4 | 12/2 | 1/65 | 2/10 | 3/9 | 4/13
1745 | 5/11 | 6/8
0745 | 7/20 | 8/3
1015 | 9/21 | a Field pH. b Loboratory pH. c Sum of calcium and magnesium in epm. d. Heavy metals reparted in table of "Spectragraphic Analyses of Surface Water". e. Derived from conductivity vs TDS curves. g Gravimetric determination. f Determined by addition of analyzed constituents. h Annual median and range, respectively. Colculated from analyses af duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); TABLE D-2 (Continued) ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) THINTY RIVER NEAR BURNT RANCH (Sta. 4b) | | Analyzed
by î | USGS | | | | | | | | | | | | | |---|---|----------------------|----------------------|-------------------------------|--------------|----------------------|--------------|--|--------------------------------------|----------------------|------------|-----------------------|--|---| | - | E E | ns | | | | | | | | | | | | - | | | bid - Coliform" 11y MPN/ml | | | | | | | | | | | | | | | T of | - pid
- ty
mdd u | -1 | | 55 | | 30 | 15 | - 2 | 5 | m | | N | N | | | | N COS | | _ | ~ | | m | | | CV | CI CI | 0 | N | m | 4 | | | | 70 | 73 | 7,2 | | 75 | 75 | 78 | 68 | 20 | 63 | 70 | | 4 | | 4 | D S E | 27 | 13 | 12 | | 0, | <u> </u> | 10 | 0, | 7 | 7 | 27 | I I | 4 | | Toto | pevios
pevios
spilos
mudo ci | | | | | | | | 82f | | | | H 86 | | | | Other constituents | PO ₄ 0.00 | PO ₄ 0.05 | Po _{t,} <u>0.1</u> 0 | | PO ₁ 0.05 | PO4 0.05 | $\mathrm{PO}_{\mathrm{l}_{\mathrm{l}}}$ 0.10 | ABS 0.0 As 0.00 PO ₁ 0.05 | Po ₄ 0.15 | PO1 0.05 | Po _{1, 0.00} | PO ₄ 0.00 As 0.00 | | | | Sifica
(SiO ₂) | | | | | | | | 77 | | | | a | | | on
iiiion | Baron
(B) | 0.0 | 0.1 | 0.2 | | 딩 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 10 | | | r million
per million | Fluo-
ride
(F) | | | | | | | | | | | | | | | parts per million
equivalents per mill | NI-
trate
(NO ₃) | 0.0 | 0.0 | 1.5 | | 1.4 | 0.9 | 0.0 | 0.03 | 0.05 | 0.03 | 0.03 | 0.00 | | | equiva | Chlo-
ride
(CI) | 6.4 | 6.5 | 1.4 | | 0.03 | 0.05 | 2.9 | 2.4 | 0.00 | 3.8 | 5.3 | 0.17 | | | Ē | Sul -
fate
(SO ₄) | | | | | | | | 5.0 | | | | 0.10 | | | constituents | Bicar-
banate
(HCO ₃) | 80 | 80 | 45.0 | | 82
1.34 | 386 | 89 | 80 | 58 | 1.26 | 83 | 1.48 | | | Mineral con | Carban-
ote
(CO ₃) | 00.00 | 0.00 | 00.00 | | 2
0.07 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 00:00 | | | M. | Potas-
sium
(K) | | | | | | | | 0.02 | | | | 0.02 | | | | Sodium
(No) | 4.7 | 5.1 | 2.6 | | 3.3 | 3.5 | 4.0 | 3.2 | 0.12 | 0.18 | 0.50 | 7.4.0
02.0 | | | | Magne-
sium
(Mg) | | | | | | | | 5.0 | | | | 9.94 | | | | Calcium
(Ca) | 07.1 | o 94.1 | 0.83 | | 1.50 | 1.50 | 1.56 | 26.0 | 1.00 | 1.26 | 1.40 c | 20
1.00 | | | | T ala | ω
0.0 | 8.2 | 7.3 | | 0.3 | 8.1 | 8.1 | 8.0 | 8.00 | 8 8
1 N | 88 | © 60 00 00 00 00 00 00 00 00 00 00 00 00 | | | Specific | conductance
(micramhos
at 25°C) | 158 | 165 | % | | 156 | 159 | 165 | 145 | 107 | 141 | 157 | 171 | | | | | 100 | 100 | 66 | | 91 | 88 | 78 | 100 | 86 | 93 | 105 | % | | | | Dissolved
axygen
ppm %Sa | 7.6 | 10.7 | 11.5 | | 0.11 | 10.0 | 0.6 | 10.2 | 9.1 | 9.5 | 0.6 | 5.6 | | | | | 09 | 53 1 | 1 94 | sible | 1,3 | L 74 | 52 | 26 1 | 79 | 59 | 72 | 65 | | | | Discharge Temp
in cfs in oF | 270 | 650 | 0109 | Inaccessible | 5600 | est.
1100 | 1020 | 1360 | 0611 | 400
400 | 300 | 0000 | | | | and time
sampled
P.S.T. | 10/13/64 | 11/3 | 12/1 | 1/65 | 2/8
1045 | 3/8
1045 | 4/12
1115 | -76: | 6/7 | 7/19 | 8/2
1030 | 1000 | | a Field pH. b Laboratary pH. c Sum of calcium and magnesium in epm. d Heavy metals reparted in table of "Spectragraphic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated fram analyses of duplicate manthly samples made by California Department of Public Health, Division of Labarataries, i Mineral analyses made by United States Gealagical Survey, Quality of Water Branch (USGS); ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued) TRINITY RIVER NEAR HOOPA (STA. 4) | | | Anolyzed
by i | nsgs | | | | | | | | | | | | |-------------------|---------------|---|----------------------|----------------|----------------|-------------|-------------|----------------------|----------------------|---|-------|----------------------|-----------------------|--------------------------------------| | | 2 | bid - Caliform
ily MPN/ml
In ppm | Median
219 | Maximum
620 | Minimum
2.3 | | | | | | | | | | | | Tur- | bid -
ity
in opm | 7 | 7 | 160 | | 170 | 100 | 740 | 70 | 30 | 47 | N | н | | | | 2000
N CO 3 | 77 | 91 | | | 0 | 4 | 9 | cv. | 77 | ٦ | 9 | ∞ | | | | | 96 | 88 | 95 | | 77 | 877 | 98 | 88 | 78 | 8 | 109 | 131 | | | Per | 80d - | 10 | 12 | 0 | | ω | ω | 0 | ~ | 70 | 6 | ω | - | | | Total | solids
in pom | | | | | | | | 100 | | | | 149 £ | | | | Other constituents | PO ₄ 0.00 | Po4 0.05 | PO4 0.15 | | PO1, 0.00 | PO ₄ 0.10 | PO ₄ 0.10 | ABS 0.0 As 0.00
PO ₄ 0.00 | | PO ₄ 0.10 | PO _{1, 0.05} | ABS 0.0 As 0.00 PO ₁ 0.08 | | | | Silica
(SiO ₂) | | | | | | _ | | 15 | | | | 16 | | | lion | Boron
(8) | 0.0 | 0.1 | 0.3 | | 0:0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | million | per million | Fluo-
ride
(F) | | | | | | | | | | | | | | ports per million | equivalents p | Ni-
trote
(NO ₃) | 0.00 | 0.05 | 0.03 | | 0.05 | 0.0 | 0.8 | 0.03 | | 0.03 | 2.4 | 0.00 | | 0 | equiv | Chlo-
ride
(CI) | 6.2 | 7.8 | 0.05 | | 000 | 0.03 | 0.00 | 0.05 | 0.00 | 3.6 | 4.4 | 0.14 | | - 1 | ē | Sul -
fote
(SO ₄) | | | | | | | | 0.10 | | | | 0.27 | | | canstituents | Bicar-
banate
(HCO ₃) | 105 | 1.56 | 96.0 | | 87
1.43 | 1.49 | 1.61 | 35 | 86 | 112 | 1.93 | 150
2.46 | | | Mineral car | Carbon-
oie
(CO ₃) | 00.00 | 0.00 | 0.00 | | 20.07 | 0.10 | 000 | 0.03 | 0.03 | 4
0.13 | 4
0.13 | 0000 | | | Ψ. | Patos-
sium
(K) | | | | | | | | 0.3 | | | | 0.02 | | | | Sodium
(Na) | 0.21 | 5.3 | 2.5 | | 2.9 | 3.2 | 3.8 | 3.0 | 3.7 | 4.7 | 0.50 | 0.21 | | | | Magne-
sium
(Mg) | | - 10 | | | | . 10 | | 7.8 | | | | 0,42 | | | | Colcium
(Co) | 2.80 | o
1.76 | 1.12 | | 0
1.49 | 2.68 | 1.72° | 200 | 1.52° | 1.98 | 2.18 | 5-20
2-20 | | | | PH
Th | 8.8 | 8.1.8 | 7.6 | | 7.5 | 8.3 | 8.0 | 7.8
8.5 | 0 2 | 7.7 | 8.5 | 8.20 | | | Specific | canductance
(micramhos
at 25°C) | 196 | 198 | 120 | | 155 | 170 | 176 | 168 | 160 | 214 | 524 | 564 | | | | 1 6 1 | 105 | 101 | 8 | | 95 | 89 | 91 | 97 | 93 | 102 | % | & | | | | Disso | 10.2 | 10.7 | 11.0 | 4 | 11.5 | 10.3 | 8.6 | 6.6 | 9.6 | 8.00 | 4.8 | 0, | | | | Teno
in aF | 29 | 55 | 84 | ssibl | 77 | 84 | 53 | 28 | 99 | 73 | 7 | 69 | | | | Oischarge Temp
in cfs in aF | 1436 | 1110 | 17800 | Inaccessibl | 9500 | 2850 | 2980 | 3250 | 3800 | 940 | 920 | 120
120 | | | | and time
sampled
P.S.T. | 10/13/64 | 11/3 | 12/1 | 1/65 | 2/8
1230 | 3/8 | 4/12
1555 | 5/10 | 6/7 | 7/19 | 8/2
1225 | 9/20
1600 | a Field pH. b Labaratory pH. c. Sum of calcium and magnessum in epm. d. Heavy metals reparted in table of "Spectrographic Analyses of Surface Water" Derived from conductivity vs TDS curves f Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Colculated from analyses af duplicate monthly samples made by California Department of Public Health, Division of Loboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); ANALYSES OF SURFACE WATER NOFTH COASTAL REGION (NO.1) TRINITY RIVER AT LEWISTON (STA. $\hbar a$) TABLE D-2 (Continued) | | Pez | | | | | | | | | | | | | | | |--------------|--|----------------------|-----------------------|----------------------|-------------|-----------------------|----------------------|----------------------|---|----------------|-----------------------|-----------------------|--|------|--| | | Anolyzed
by i | USGS | | | | | | | | | | | | | | | | os CoCO ₃ ity MPN/ml Total N.C. ppm | | | | | | | | | |
| | | | | | Į. | - piq
it,
uppm | Ч | Н | н | | 100 | 30 | 50 | 50 | 35 | 07 | 15 | 10 | | | | | oCO ₃
N.C. | | 0 | н | | 0 | 0 | Н | 0 | m | | | CI | | | | | | 71 | £43 | ተተ | | \$\frac{1}{2} | 77 | 43 | 7,2 | £ [‡] | 75 | 24 | 2 ₄ |
 | | | 9 | sod - | 10 | 6 | 12 | | 7 | = | 10 | 0, | 0, | 12 | 11 | f 11 |
 | | | Totol | solids
solids
In ppm | | | | | | | | 62 f | | | | 61 | | | | | Other constituents | PO ₄ 0.00 | PO _{1, 0.05} | PO ₁ 0.05 | | PO ₁₁ 0.05 | PO ₄ 0.10 | PO ₄ 0.10 | ABS 0.0 As 0.00
PO ₁ 0.00 | PO1, 0.05 | PO _{1, 0.20} | PO ₁₁ 0.00 | ABS 0.0 As 0.00
Pol ₁ 0.05 | | | | | Silico
(SiO ₂) | | | | | | | | 13 | | | | 12 | | | | llion | Boron
(B) | 0.0 | 0.0 | 0.1 | | 0.0 | 0.0 | 5.0 | 0.0 | 0.1 | 0:0 | 0.0 | 0.0 | | | | per million | Fluo-
ride
(F) | | | | | | | | | | | | | | | | 5 I | rrate
(NO ₃) | 0.0 | 1.0 | 0.0 | | 0.03 | 0.05 | 0.8 | 0.0 | 0.0 | 0.02 | 0.03 | 1.1 | | | | equivolents | Chlo-
ride
(CI) | 1.3 | 0.08 | 0.02 | | 0.0 | 0.02 | 0.0 | 1.1 | 0.03 | 0.03 | 1.3 | 0.03 | | | | . <u>=</u> | Sul -
fote
(SO ₄) | | | | | | | | 0.02 | | | | 0.04 | | | | constituents | Bicor-
bonate
(HCO ₃) | 52
0.85 | 53 | 52
0.85 | | 51
0.84 | 51, | 51
0.84 | 52
0.85 | 08.0 | 50
0.82 | 50.82 | 08.0 |
 | | | | Carbon-
ote
(CO ₃) | 0.00 | 00.00 | 00.00 | | 00.00 | 0.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 00.00 | | | | Minerol | Potos-
Sium
(K) | | | | | | | | 0.5 | | | | 0.5 | | | | | Sodium (No) | 2.3 | 0.00 | 0.12 | | 0.10 | 0.10 | 2.3 | 2.0 | 2.1 | 2.6 | 2.2 | 2.2 | | | | | Mogne-
sium
(Mg) | | | | | | | | 6.1 | | | | 0.23 | | | | | Colcium
(Co) | 388.0 | 38.0 | 0.88 | | 0.85 | 0.85 | 3.86 | 7.0 | 0.86 | 0.84 | 0.84 | 12 | | | | | H alo | 7.7 | 7.10 | 8.0 | | 7.2 | 7.9 | 7.3 | 7.6 | 7.5 | 7.6 | 7.7 | 7.6 | | | | Specific | conductonce
(micromhos
of 25°C) | 95 | 93 | `8. | | 91 | 91 | 95 | 06 | 89 | 96 | 68 | 90 | | | | | | 66 | 101 | 8, | | 85 | 78 | 98 | 96 | 76 | 80 | 86 | 87 | | | | | Dissolved
oxygen
ppm %So | 10.9 | 11.2 | 0.11 | | 7.6 | 6.8 | 10.9 | 10.4 | 10.5 | 10.4 | 9.01 | 10.0 | | | | | | L Tu | L T | 94 | ssible | 145 | 542 | 14 | 64 | 67 | 20 | 6# | 44 | | | | | Dischorge Temp
in cfs in 0F | 205 | 257 | 254 | Inaccessibl | 159 | 155 | 170 | 164 | 991 | 157 | 157 | 157 | | | | | Dote
ond time
sompled
P.S.T. | 10/13 | 11/3 | 12/1
0850 | 1/65 | 2/8 | 3/8 | 4/12 | 5/10 | 6/7 | 7/19 | 8/2
0815 | 9/20 | | | b Loborotory pH. c Sum of colcium and magnesium in epm. Determined by addition of analyzed constituents. d Heovy metals reported in table of "Spectragraphic Analyses of Surface Water" e Derived from conductivity vs TDS curves. h Annuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by Californio Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); Gravimetric determinotion. NORTH COASTAL REGION (NO. 1) VAN DUZEN RIVER NEAR BRIDGEVILLE (STA. 5a) | | Analyzed
by i | USGS | | | | | | | | | | | | | |--------------|--|--------------|---------------|----------------|----------|--------|-------------|--------------|---------------------------------|-------|--------------|-------------|------------------------------|---| | , | A/mi | | mum m | um w | | | | | | | | | | | | , | bid - Coliform ⁿ
ity
n ppm MPN/ml | Median
22 | Maximum
62 | Minimum
2.3 | | | | | | | | | | | | F- | Pid C | | | 540 | | 500 | 07 | 200 | 7,0 | 9 | | | - | | | | As CaCO ₃ as CaCO ₃ ppm ppm | 118 7 | 99 15 | 9 1717 | | 64 2 | 76 10 | 9 29 | 8 44 5 | 111 6 | 141 11 | 144 11 | 162 | | | | - pog | ET. | Ħ | 0 | | 77 | 11 | 11 | 10 | 10 | 9 | 7 | S | | | Total | solved
solved
in ppm | | | | | | | | 107f | | | | 204 F | | | | Other constituents d | | | | | | | | ABS 0.0 As 0.00 Po $_{l_1}$ | | | | PO ₄ 0.00 As 0.00 | | | | Silica
(SiO ₂) | | | | | | | | 6.3 | | | | T T | | | llion | Boron
(B) | 0.2 | 0.1 | 0.0 | | 0.0 | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | | | per million | Fluo-
ride
(F) | | | | | | | | | | | | | | | 5 | Ni-
trate
(NO ₃) | | | | | | | | 1.1 | | | | 0.00 | | | equivalents | Chlo-
ride
(Cl) | 4.6 | 2.8 | 0.0 | | 0.03 | 0.0 | 0.03 | 1.4 | 0.05 | 3.4 | 3.8 | 4.4
0.12 | | | . uı | Sul -
fote
(SO ₄) | | | | | | | | 12 0.25 | | | | 0.62
0.62
0.03
0.03 | | | constituents | Bicor-
bonate
(HCO ₃) | 125
2.05 | 103 | 46 | | 1.25 | 80 | 74 | 96 | 250 | 139 | 2.43 | 2.66 | | | | Corbon-
ate
(CO ₃) | 5.17 | 00.00 | 00.0 | | 00.00 | 0.00 | 00 | 000 | 0.10 | 10 | 0.23 | 0.23 | | | Mineral | Potas- C
Sium
(K) | | | | | | | | 0.0 | | | | 0.0 | _ | | | Sodium P
(Na) | 8.0 | 5.5 | 2.0 | | 3.6 | 4.4 | 4.0
0.17 | 0.18 | 92.0 | 0.33 | 0.36 | 0.638
0.43 | | | | Magne-
sium
(Mg) | | | | | | | | 4.6
0.38 | | | | 01.84 | | | | Colcium (Co) | 2.36 | 86.1 | 0.87 | | , 82.I | 1.51 | 1.34 c | 26 | 2.22 | 2.82 | 2.88 | 2.40 | | | | PIS PH | 0 80 | 0.00 | 7.8 | | 20.0 | 0.00 | 2.5 | 8.0 | 000 | 000 | 000 | 0 to 0.0 | | | Somethic | conductance
(micromhos
at 25°C) | 259 | 216 | % | | 140 | 164 | 145 | 181 | 232 | 295 | 303 | 338 | | | | | 105 | % | 95 | | 81 | ま | 93 | 66 | 75 | 100 | 100 | 8 | | | | Dissolved
oxygen
ppm %Sq | 6.6 | 9.8 | 10.5 | Je | 7.6 | 10.0 | 10.3 | 9.3 | 7.6 | 8.7 | 8.5 | | | | | To or | 65 | 54 | 51 | cessible | 517 | 57 | 51 | 69 | 58 | 72 | 77 | 61 | | | | Dischorge Temp
in cfs in oF | 0.6 | 17 | 5470 | Inac | 086 | 300 | 764 | est. | est. | est. | est.
19 | est. | | | | Date ond time sampled P. S.T. | 10/14/64 | 11/4
1540 | 12/2
1545 | 1/65 | 2/9 | 3/8
1740 | 4/13
1410 | 5/11 | 6/9 | 7/21
0845 | 8/h
0840 | 9/21
1600 | | o Field pH. b Loboratory pH. c Sum of calcium and magnesium in epm. d Heavy metals reparted in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Gravimetric determination. h. Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, i. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) WILLIAMS CREEK NEAR COVELO (STA. 5f) | | Anolyzed
by i | | uses | | | | | | | | | | | |--|---|-------------|------------------|------------|---------|-------------|------|-------|-----------------|-------------|-------------|-------|------------| | | bid - Coliform ity MPN/ml | | | 7 | | 0 | + | - | 5 | CI CI | | 0 | | | 1 | # P OE | | 3 | 1 7 | | 14 30 | 7 7 | 7 30 | 2 | 6 | 8 | 9 | | | | Hordness
os CoCO ₃
Total N.C.
ppm ppm | | 140 18 | 20 1 | | 18 1 | 99 | 19 | | 100 | 152 { | 145 (| - | | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 8 17 | 11 | | 7 77 | | 01 | 6 | 9 1 | 9 | 7 | 68 177 | | loto | solved
solved
ln ppm | | 160 ^f | 69 | | 634 | | | 90 [£] | | | | 202f | | | Other constituents | | | | | | | | | | | | | | | Sifica
(SiO ₂) | | 1.6 | | | 80 | | | 7 | | | | 13 | | on | - Boron
(B) | | 0.2 | 0.0 | | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | | ports per million
equivolents per million | Fluo-
ride
(F) | | 0.1 | 0.5 | | | | | | | 0 | | | | ports p | Ni-
trote
(NO ₃) | | 0.5 | 0.8 | | 0.00 | 0.00 | 2.0 | 1.1 | 0.02 | 0.02 | 1.6 | 0.00 | | equi | Chlo-
ride
(Cf) | | 1.6 | 0.4 | | 0.4 | 0.0 | 0.0 | 0.0 | 0.03 | 0.03 | 1.5 | 1.8 | | NI S | Sul –
fate
(SO ₄) | | 31 | 8.0 | | 7.0 | | | 11
0.23 | | | | 19
0.40 | | Mineral constituents | Bicar-
bonate
(HCO ₃) | | 2.25 | 56.0 | | 54
0.89 | 72 | 69 | 84 | 107 | 160
2.62 | 159 | 3.15 | | serol co | Corbon-
ote
(CO ₃) | | 0.20 | 00.00 | | 00.00 | 0.00 | 00.00 | 00.00 | 2
0.07 | 8
0.27 | 5.17 | 6 | | Min | Potos-
sium
(K) | | 0.02 | 0.0 | | 0.02 | | | 0.5 | | | | 1.3 | | | Sodium
(Na) | | 5.7 | 6.7 | | 2.8 | 2.6 | 3.4 | 3.3 | 4.6 | 0.21 | 4.9 | 6.0 | | | Magne-
sium
(Mg) | | 13 | 0,10 | | 4.4 | | | 6.3 | | | | 19 | | | Colcium
(Ca) | | 35 c
1.75 | 12
0.60 | | 12
0.60 | 1.32 | 1.28 | 19 | 2.00 | 3.04 | 2.90 | 39 | | | ماه ج | | 8.3 | 4.0 | | 7.9 | 7.6 | 7.7 | 8.1 | 8.0 | 8.3 | 8 8 | 88.3 | | Soecific | conductance
(micromhos
of 25°C) | | 288 | 111 | | 102 | 139 | 141 | 157 | 203 | 295 | 586 | 343 | | | Dissolved
oxygen
ppm %Sat | | 113 | 66 | | 101 | 16 | 82 | % | 89 | 119 | 125 | 122 | | | Diss | | 11.6 | 11.4 | | 11.9 | 9.8 | 9.1 | 9.3 | 7.2 | 9.5 | 10.3 | 10.0 | | | Ten of in of | palder | 57 | 45 | paldus | 43 | 20 | 7,8 | 59 | 75 | # | 7.7 | 47 | | | Discharge Temp | Not Sampled | | | Not San | | | | | | | | | | | ond time
sompled
P.S.T. | 10/64 | 11/6 | 12/4 | 1/65 | 2/2
1000 | 3/11 | 4/15 | 5/13 | 6/9
1625 | 7/22 | 8/5 | 9/23 | a Field pH. b Loboratory pH. c Sum of colcium and magnesium in epm. d Heavy metals reparted in table of "Spectrographic Analyses of Surface Water". e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Grovimetric determination. h Annuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); ## TABLE D-3 ANALYSES OF TRACE ELEMENTS IN SURFACE WATER | | ပ္ | 2 | * | | -1- | ale ele | ale et | 4 | ale ele | a | | . * | | | | | |---------------------------|--|------|-------------------------|------------------------------------
---------------------|-----------------------------------|----------------------------|--------------------------|---------------------------------|-----------------------|----------------------------|--------------------------|-----------------|-------|----------|--| | | m Zinc | (Zn) | 5.7 | 5.7* | | 13 * 5.7* | 13 * | 13 * | 13 * | * * * | * 51 | 13 *
0.57* | | | | | | | Titanium Vanadium | (\$ | *62.0 | *62.0 | *65.0 | 12
8.3 | 6.6 | 6 m | 4.8 | 11 0.29* | *19.0 | 0.29* | | | | | | | Titanıum | (Ti) | 0.57* | 0.57* | *15.0 | 1.3 * | 1.3* | 1.3** | 1.3* | 1.3* | 1.3** | 1.3* | | | | | | | Lead | (Pb) | 1.4* | 1.4* | 7.4* | 3.3* | 3.3 | 3.3* | | 3.3* | 3.3* | 3.3*
1.4* | | | | | | | Nickel | (Ni) | 9.0 | 1.2 | 1.2* | 0.93 | 3.5 | 17 | 3.0 | 1.4 | **19.0 | 0.00 | | | | | | | Molyb- | (Ma) | *62.0 | 3.4 | 7.4* | 0.67** | 17, | 0.67** | 0.67** | 0.67** | *29.0 | 0.67** | |
 | | | | | <u> </u> | (Mn) | 1.4* | *7-7 | 1.4* | 3.3* | 3.3* | 3.3* | 3.3* | 3.3* | 3.3* | 1.4* |
 |
• | | | | r billion | Η. | (Ge) | *63.0 | *62.0 | *65.0 | 0.67*
0.29* | *62.0 | 0.67* | 0.67* | *62.0 | *29.0 | 0.67* |
 | | <u> </u> | | | parts pe | Gallium G | (09) | 5.7* | 5.7* | 0 | 1.3* | 13 * 0 | 13 * 0 | 13 * 0 | 13 * 0 | 13 * 0 | 13 * 0.5.7* | | | | | | Constituents in parts per | lron G | (Fe) | 42 | 15 | 44 | 97
04 | 73 1
2860 | 43
2860 | 83
24 | 22 889 | 10 1 | 27 10 |
 | | | | | Constit | Capper | (Cu) | *1.1 | *7.1 | *†•'t | 3.3* | 3.3* | 3.3* | 3.3* | 3.3*
1.4* | 3.3* | 3.3* |
 |
 | | | | | Chra- C | (Cr) | 1.4* | 1.4* | 7.7* | 3.3* | 3.3* | 3.3* | 3.3* | 3.3* | 3.3* | 3.3*
1.1* | | | | | | | Cobalt | (co) | 7.4* | 1.4* | 1.4* | 3.3* | 3.3* | 3.3* | 3.3* | * | 3.3* | 1.4
1.4
1.4 | | | | | | | | (PD) | 7.4* | 1.4* | | 3°3*
L°4* | 3.3* | 3.3* | 3.3* | 3.3* | 3.3* | 3.3* | | | | | | | Bismuth Cadmium | (Bi) | *62.0 | *62.0 | *62.0 | * 4.0 | 0.67* | 0.67* | 0.67* | 0.67* | *29.0 | 0.67* | | | | | | | Beryl- | (Be) | *25.0 | 0.57* | | | 1.3 * | | 1.3 * | | | | | | | | | | | (A1) | 9.6 | 9.1 | 7.7* | 19.8 | 35 | 17 6.3 | 21.
8.9 | 1.4* | | 1.04* | | | | | | | Date , | | 9-23 | 9-23 | 9-52 | 5- 4
9-15 | 5-12 | 5-10 | 5- 4
9-15 | 5-10 | 5-13 | 5-10
9-20 | | | | | | | Sta. | | - 5g | 5c | 9 | 7 | m | 28 | 82 | 68 | 25 | 4 | | | | | | Station | | | Eel River near Dos Rios | Eel River, Middle Fork at Dos Rios | Eel River at Scotia | Klamath River below Iron Gate Dam | Klamath River near Klamath | Klamath River at Orleans | Klamath River near Seiad Valley | Mad River near Arcata | Outlet Creek near Longvale | Trinity River near Hoopa | | | | | ^{*} Fesults are less than the amount indicated ** Equal to, but slightly less than the amount indicated APPENDIX E GROUND WATER QUALITY ### GROUND WATER QUALITY The Ground Water Quality Data Program provides basic information on the quality characteristics of the State's ground waters. Data presented in this appendix are measured values of selected quality characteristics of ground waters in the North Coastal Area, as shown on the "Area Orientation Map". The Ground Water Quality Data Program is based on systematic sampling of a predetermined network and is reported annually by water year. The Ground Water Quality Data Program is performed in cooperation with local, and other state and federal agencies. All data presented in this volume are within the North Coastal Water Quality Control Region (No. 1) excluding the Russian River drainage basin and the area along the coast south of the Mattole River drainage. Wells sampled in the Ground Water Quality Data Program are arranged by basin and tabulated in sequence by township, range, and section. The eleven ground water basins sampled during 1964-65 in the North Coastal Area are shown on Figure C-1 in Appendix C. The Ground Water Quality Data Program consists of selecting locations to be sampled, collection of samples by Department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings. Except where noted, tabulated values for temperature are those measured in the field at the time of sampling. Comments on local conditions are noted in the field books but are not included in the tabulation. Tabulated values for dissolved minerals are the analytical quantity reported in milligrams per liter (mpl) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and temperature in degrees Fahrenheit. Laboratory analyses of ground water were performed in the Department's Chemical Laboratory at Bryte in accordance with "Standard Methods for the Examination of Water and Waste Water", Twelfth Edition; or by the U. S. Geological Survey (USGS) in accordance with "Methods for Collection and Analysis of Water Samples", Water Supply Paper 1454. The two methods yield comparable results. During 1964-65, no ground waters in the North Coastal Area were analyzed for trace elements. ### Well Numbering System The state well numbering system used in this report is based on the township, range, and section subdivision of the United States Public Land Survey, and is described in more detail in Appendix C of this bulletin. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number of a well, assigned in accordance with this system, is referred to as the State Well Number. # MINERAL ANALYSIS OF GROUND WATER | WELL | | | | 41 NE RAL | | CONSTITUENTS | N 1 S. | MILLI | MILLIGRAMS PER LITER | PER LI | TER
ER L | ER | MI | MILLIGHAMS | MS PER | | | |--|------|------------------|------------------|-----------------|---------------------|-----------------------|---------------|--------------|----------------------------------|------------|----------------|-----------------|-----|------------|--------|------|-------| | DATE LAB
TIME SAMPLER | TEMP | LA8-PH
FLD-PH | LAB-EC
FLD-EC | CA | MG | 4 Z | × | PERCE
CO3 | PERCENT REACTANCE
03 HC03 504 | SD4 | VALUE | N03 | LL. | æ | 5102 | TUS | NCH | SMITH RIVER PLAIN | | | | | | | | | | | | | | | | | | | 16N/01W-02001 H
09/22/65 5050
1630 | - | 8.1 | 223 | } | 1 | .65 | 1 | 00 | 114 | } | .31 | 1 | 1 | 1 | 1 | ! | 4 0 | | 16N/C1W-15C01 H
07/07/65 5050
1655 | | 7 . & | 48 | - | 1 | . 28
8 | 1 | 00 | 3.39 | } | . 28 | 2 . 4 | 1 | 1 | } | 1 | 23 | | 16N/01W-17K02 H
09/16/65 5050
133C | 1 | 7.0 | 282 | 6.3
.31 | 1.15 | 25
4 25 | .03 | 00 | 960
40 | 3.6
.07 | . 85
34 | 36
.58
23 | 1 | 0. | | 161 | 74 | | 16N/01W-20A02 H
07/07/65 5050
1635 | | 8. | 288. | 1 | | 26 | ł | 00 | . 64 | 1 | 23.05.05 | 48 | ŀ | | - | 1 | 75 | | 16N/01W-20H01 H
07/07/65 5050
1630 | ł | 7.9 | 177 | - | - | .61 | 1 | 000 | 999 | 1 | 17 | .31 | | 1 | 1 | ŀ | 7 4 1 | | 17N/01W-02G01 H
06/24/65 5050
1510 | - | 7.9 | 113 | 1 | 1 | 5.7 | 1 | 00 | • 69 | 1 | 8 • 8
• 2 4 | t | 1 | 1 | 1 | 1 | 0 0 | | 17N/01W-04J01 H
08/26/65 5050
1620 | 1 | 7.6 | 251 | 1 | 1 | 4 • 1 8 · 1 8 | 1 | 00 | 2,33 | 1 | 7.7 | 1 | 1 | 1 | 1 | 1 | 122 | | 17N/01W-14C01 H
08/00/65 5050
1630 | 1 | 7.4 | 192 | 3.8 | 19
1 • 56
78 | 5 • 4
• 2 3
1 2 | .02 | 000 | 99 | 0.5 | 9.0 | . 05
3 | 1 | 0 | 1 | 114 | 8 6 | | 18N/01W-05G01 H
07/07/65 5050
1515 | 1 | 7.4 | 177 | | 1 | 10. | - | 000 | .23 | 1 | E 60 . | • 19 | 1 | 1 | 1 | 1 | 29 | | 18N/01W-17R01 H
09/10/65 5050
1505 | _ | 8 | 228 | 17
•85
36 | 9 • 8
• 81
35 | -65
-65
-28 | .02 | 000 | 112
1.84
80 | 000 | • 45
19 | .02 | 1 | 0. | - | 1140 | 83 | TABLE E-I (Continued) MINERAL ANALYSIS OF GROUND WATER | | I | 06 | | ۰ ٥ | 38 | 00 | 6 | 4 | 0 | 4 E | |---|----------------------------------|---|--|--|--|--|---|--|--|--| | 1 1 | NCH | <u> </u> | 111 | 117 | m | 1 8 0 | 148 | 304 | 229 | n
 | | | SUM | ! | | 202 | | 310 | | ! | 1 | 1 | | MS PER | 5102 | <u> </u> | ļ | 1 | 1 | | ! | 1 | 4 | 1 | | MILLIGRAMS | B | + | 1 | 0 | 1 | | 1 | 1 | 1 | 2.0 | | Σ | F | } | 1 | 1 | ! | | - | 1 | | د .
د | | ER | ND3 | 1 | 1 | 8.0
.13 | 1 | 6 • 1
• 10
2 | 1 | 1 | 1 | | | TER
LITER | CL | | 1 | 1.6
.05 | 1 | . 48
8 | 1 | 1 | 1 | | | PER LI | S04 | 1 | + | . 50
18 | 1 | 522
9 | 1 | 1 | 1 | 1 | | MILLIGRAMS PER LITER
MILLIEUUIVALENT PER LITER | PERCENI REACIANCE
03 HC03 S04 | 1 | | 127
2.08
73 | 1 | 272 | | 1 | 1 | 1 | | MILLI | CO3 | I | 1 | 2.0
.07
.07 | 1 | 41. | | 1 | 1 | 1 | | ITS IN | ¥ | } | } | 4.1
.10 | } | 14. | 1 | 1 | 1 | | | CDNSTITUENTS | A Z | 8 • 3 • 3 • 3 • 3 • 4 • 4 • 4 • 4 • 4 • 4 | 33 | . 44
15 | 30 | 1.91 | 1 | | | 240
10.44
1 | | | MG | 9.7 | 1.22 | 1.40 | 1 | 31 2.55 | 1 | 1 | 1.63 | | | MINERAL | CA | 20 | 20 | 19
95
33 | 1 | 24 | 1 | 1 | 2.94 | } | | | LAB-PH LAB-EC | 210 | 326 | 261 | 215 | 526 | 360 | 534 | 533 | 961 | | | АН-РН
LD-РН | | 1 | 4.0 | į | φ
• | 1 | 1 | 1 | - | | | TEMP F | | 1 | 1 | 1 | † | 1 | ; | + | - | | STATE WELL NUMBER | | BUTTE VALLEY 45N/02#-01P01 U 08/11/65 5050 1030 | 46N/01w-17801 D
08/11/65 5350
1100 | 46N/02W-25K02 D
38/11/65 5050
1040 | 47N/01w-23H02 D
08/11/65 5050
1200 | 48N/01E-30N01 D
08/11/65 5050
1040 . | SHASTA VALLEY
42N/05#-20J01 D
08/11/65
5050
0830 | 42N/C6W-10J31 D
08/11/65 5050
C810 | 44N/C6W-22K01 D
08/11/65 505C
0710 | 45N/05W-06E01 D
08/10/65 5050
1410 | MINERAL ANALYSIS OF GROUND WATER | 1 1 | I D | | 22 | 260 | 61 | 268 | 217 | 24 | | 81 | 108 | 159 | |--|--------------------------------|----------------------|--|--|--|--|--|---|----------------|--|--|--| | 1 1 | SUM | | | 263 | ! | 261 | 1 | 1 | | 1 | 1 | 1 | | MS PER | S102 | | 1 | 1 | l | 1 | 1 | - | | 1 | 1 | 1 | | MILLIGRAMS | æ | | | : | 1 | : | 1 | ı | | 1 | 1 | 1 | | Σ | u. | | 1 | 1 | | 1 | 1 | | | 1 | 1 | - | | ER | NOS | | 1 | 9.7 | 1 | 9.3
3.3 | ŀ | 1 | | 1.4 | l | .02 | | TER
PER LIT | CL | | 1 | 10.4 | 1 | 2 • 8
• 08
1 | 1 | 1 | | 2.9 | 1 | . 50 | | PER LI | SO4 | | l | . 29 | ŧ | 4.8
.10 | 1 | - | | 1 | 1 | | | MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER | DERCENT REACTANCE 03 HC03 504 | | - | 295
4.84
91 | 1 | 302
4.95
88 | 1 | 1 | | 1 | 1 | 1 | | MILLI | CO3 | | 1 | 000 | 1 | 10
•33 | 1 | 1 | | - | 1 | | | I S IN | ¥ | | 1 | .03 | 1 | 0.4 | 1 | 1 | | 1 | 1 | - | | CONSTITUENTS | A Z | | 1 | 4.8
.21
4 | - | 8 +
9 0 0 4 | 1 | 1 | | .31 | 1 | .61 | | | ₩. | | 1.1 | 32
2.63
48 | 3.9 | 2.63 | 2.24 | . 0 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • | | 9.4 | 1.01 | • 99 | | MINERAL | V C | | .35 | 2.59 | . 90 | 54
2.69
48 | 2.10 | 9•1 | | . 85 | 23 | 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · | | | LAB-EC
FLD-EC | | 5
5 | 452 | 131 | . 459 | 397 | 80 | | 184 | 238 | 352 | | | LAB-PH LAB-E | | 1 | 8.2 | 1 | 80 | 1 | 1 | | 1 | 1 | | | | TEMP (| | 1 | 60.0F | ł | 55.0F | 56.0F | 1 | | 63.0F | 60.0F | 58.0F | | | | | | | | u, | u, | | | | <u> </u> | 4) | | WELL | DATE LAB
TIME SAMPLER | אפוואו משערמ שוויסטפ | 42N/C9W-27K01 D
08/10/65 5050
1120 | 43N/09W-02G01 D
08/10/65 5050
0950 | 43N/09W-08F01 D
08/10/65 5050
1140 | 43N/09W-24F01 D
08/10/65 5050
1145 | 43N/09W-24F02 D
08/10/65 5050
1150 | 43N/09W-28D02 D
C8/10/65 5050
1025 | HAYFORK VALLEY | 31N/12W-12L01 D
08/12/65 5050
1045 | 31N/12W-15K01 D
08/12/65 5050
1145 | 32N/11W-35G01 D
08/12/65 5050
1005 | TABLE E-I (Continued) MINERAL ANALYSIS OF GROUND WATER | | NCH | | 130 | 108 | 249 | 57 | 188 | 184 | 0 0 | 0 | 0 0 | | |---|-----------------------|------------------|--|--|--|---|--|--|--|--|---|--| | LITER | TOS | | 212 | 215 | 317 | 143 | 233 | 225 | 219 | 388 | 0 | | | MS PER | 5102 | | 1 | 1 | 1 | 1 | 1 | 1 | ! | 1 | 1 | | | MILLIGRAMS | 8 | | : | 0, | : | 0. | 0 | • | • | r. | 0 | | | M | ш | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | | | ER | NO3 | | 1 • 1 | 00.1 | .00 | 9.5
15 | .03 | 0.7 | .02 | 2.8 | 2 • • • • • • • • • • • • • • • • • • • | | | ITER
PER LITER | VALUE
CL | | .76
.76 | 38 | 1.27 | 15
4 2
2 3 | .37 | .31 | .34 | 92
2.59
36 | .51
47 | | | MILLIGRAMS PER LITER
MILLIEOUIVALENT PER | PERCENT REACTANCE | | 1.0 | 000 | 1.0 | 21
444
24 | 5.0 | 3.0 | 1.0 | 000 | 5.0
• 10
• 9 | | | GRAMS | NT REA | | 2.90 | 157
2.57
71 | 279
4.58
78 | 8 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 204
3.35
79 | 212
3.48
85 | 193
3•17
82 | 262
4•30
59 | 26
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | MILLI | PERCE
CU3 | | 6 • 0
• 20
5 | 000 | 000 | 1 | .40 | 7.0 | 9.0 | 9 • 0
• 30 | 00000 | | | 15 IN | ч | | 3 · 1
• 08
2 | 1.5 | 2.7 | 3.6
.09 | 1.2
.03 | 1.2 | 1.2 | 3.6 | 00.02 | | | CONSTITUENTS | ¥ Z | | 1.31 | 32
1•39
39 | .65 | .61
.33 | 9.2 | 9 • 9 • 10 | 9.0 | 129
5•61
78 | 14
• 61
58 | | | | MG | | 1.56
39 | 1.15 | 33 2.71 | 7.2
.59
32 | 1.73 | 1.07 | .90 | .90
.13 | 1.7 | | | MINERAL | CA | | 20
1 • 00
25 | 20
1.00 | 2.30 | . 55
30 | 2.00 | 52
2•59
63 | 2.50
65 | 12
•60
8 | 5.6
•28
27 | | | | LAB-EC
FLD-EQ | | 371 | 351 | 539 | 207 | 379 | 365 | 345 | 721 | 123 | | | | LAB-PH
FLD-PH | | 8.0 | 8•1 | 8.0 | 7.9 | 8 • 7 | φ
•
• | 8.6 | 8 . | 7.6 | | | | L
TEMP F | | 1 | 1 | ; | 1 | 1 | ŀ | 1 | 1 | 1 | | | STATE WELL NUMBER | DATE LAB TIME SAMPLER | עהדדאז ממדום תאא | 05N/01E-04H02 H
07/23/65 5050
1455 | 05N/01E-08J H
07/23/65 5050
1510 | G6N/01E-07M01 H
07/23/65 5050
1152 | 06N/01E-08H01 H
07/23/65 5050
1435 | C6N/01E-17D01 H
07/23/65 5050
1156 | 06N/01E-19001 H
07/23/65 5050
1145 | 06N/01E-30N01 H
07/23/65 50S0
1035 | 06N/01E-32F01 H
07/23/65 5050
1450 | 06N/01W-01H01 H
07/23/65 5050
1420 | | ## MINERAL ANALYSIS OF GROUND WATER | | I | | | 39 | 51 | 196 | 9.0 | 104 | 4 O | | 149 | 1102 | 306 | |---|-------------------------|--------------|--------------|--|--|--|--|--|--|------------------|--|--|---| | R LITER | 201 | E00 | | 001 | 93 | 313 | 100 | 516 | 179 | | 194 | 2756 | 572
571 | | MILLIGRAMS PER | 2013 |) I | | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | | | a | ٥ | | 0 | 0 | : | 0 | 1.5 | • | | | | • | | M | 2 | - | | 1 | 1 | 1 | 1 | 1 | ı | | | 1 | | | IER | 502 | CON | | 000 | 000 | 7.4 | 000 | 00 · | 0 • 0 • 0 • 0 • 0 | | .23 | 3.5 | 4.4
.07
1 | | ITER
PER LITER | VALUE | , | | .39
29 | .39
25 | .79
.15 | .37
23 | 112
3.16
36 | , 830
31 | | 8.1
.23 | 1170
32,99
81 | 184
5 19
50 | | MILLIGRAMS PER LITER
MILLIEOUIVALENT PER | CTANCE | 204 | | 0.4.080 | 9 12 | .08 | 4 • 0
• 08
5 | 000 | 0 • • • • • • • • • • • • • • • • • • • | | 21
• 44
13 | 79
1.64 | 2 2 8 8 0 0 | | | PERCENT REACTANCE VALUE | HCU3 | · | 87
65 | 1.07 | 240
3.94
74 | 1.15 | 300 | 108 | | 144 2.36 | 352
5.77
14 | 4
. 366
4 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 | | MILL | PERCE | cns | | | 000 | 8
8 | 000 | .73
.8 | 00 | | 2.0 | 8.0
.27 | .13 | | NI SIZ | | × | | .02 | 4.0.
4.0. | 3.7 | 1.7
.04
3 | 5.2
•13 | 0 • • • • • • • • • • • • • • • • • • • | | 2 • 5
• 0 6
2 | 102
2.61
7 | 0 1 4
1 4 | | CONSTITUENTS | | ď | | .57 | .48
31 | 29
1.26
24 | 11
•48
30 | 156
6.79
75 | 1,00 | | 8.6 | 355
15.44
39 | 3.74
3.74 | | | | 2 | | 5 • 8
• 48
35 | 9.5
.78
51 | 25 25 39 | 7.8
.64
40 | 1.32 | 999
36 | | 18
1•48
43 | 161 | | | MINERAL | | ۲, | | 6.0
.30
22 | 4 • 4
• 24
16 | 38
1 • 90
36 | 8 • • • • 2 8 2 8 | .80
.9 | . 70
. 26 | | 30
1 • 50
44 | 176
8•78
22 | 5.54 | | | LA. | rLU-EC | | 148 | 159 | 495 | 151 | 856 | 569 | | 317 | 4150 | 988 | | | LAB-PH | FLU-PH | | 8.1 | 8.2 | 8.6 | 8 2 | 8 | 0 • 8 | | 8 • 3 | B . | 8
• | | Г | | I L M F | | 1 | 1 | 1 | ; | 1 | 1 | | | 1 | 1 | | | (| 0.3 | | | | | | | | | | | | | | 6.H. | 3 | | | | | | | | | | | | | STATION NUMBER | DATE LAB | TIME SAMPLER | EUREKA PLAIN | 03N/01W-05K01 H
07/27/65 5050
1505 | 04N/01W-08P01 H
10/11/65 5050
1440 | 04N/01W-16H01 H
08/28/65 5050
1545 | 04N/01W-17801 H
10/11/65 5050
1450 | 05N/01E-18U01 H
07/23/65 5050
1535 | 05N/01E-20001 H
07/23/65 5050
1525 | EEL RIVER VALLEY | 02N/01W-04D01 H
08/09/65 5050
1215 | 03N/02W-27601 H
07/27/65 5050
1605 | 03N/02W-35M01 H
07/27/65 5050
1620 | | 514 | 70 | | EUR | 0370 | 10,1 | 0 8 0 | 101 | 057 | 057 | EEL | 02, | 037 | 0370 | TABLE E-I (Continued) MINERAL ANALYSIS OF GROUND WATER | | | | | 11 NE RAL | | CONSTITUENTS | NI SI | MILLI | MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER | PER LI | TER
ER LITI | 2 | N N | LIGRA | MILLIGRAMS PER | LITER | 1 | |---|--------|------------------|------------------|------------|------------------|-------------------|----------------|--------------|--|------------|---------------------|--------------|-----|-------|----------------|-------|-----| | LAB
SAMPLER | TEMP F | LAB-PH
FLD-PH | LAB-EC
FLD-EC | CA | MG | ΥZ | × | PERCE
CO3 | PERCENT REACTANCE VALUE | SD4 | VALUE
CL | E O N | L | æ | S102 | SUM | NCH | | EEL RIVER VALLEY | ω
• | 436 | 33 | 29
2•38
51 | .61
13 | 1.8
.05 | 6.0 | 171
2.80
62 | . 89
20 | .62 | 0.7 | | • | 1 | 256 | 200 | | | 1 | α
• τ | 427 | . 05
44 | 2.14 | 9.1 | 1.8 | 00 | 210
3.44
76 | . 54
12 | .34 | . 12
. 19 | | | 1 | 238 | 210 | | r | i | ω
« | 1870 | .59 | 74
6.08
37 | 158
6.87
41 | 2.6 | 000 | 78
1,28
8 | 24.5 | 534
5.06
89 | 7.4 | 1 | 0 | 1 | 906 | 482 | | C3N/O2W-13JO1 H O8/O9/65 5050 1125 ROUND VALLEY | 1 | φ | 2420 | 41 | 7.97 | 141
6•13
25 | 4 • 3
• 1 1 | 00 | 202
3•31
14 | 0 m m | 706
9.91
83 | 0 0
0 0 | 1 | • | 1 | 1564 | 890 | | 22N/12#-06L02 D
08/24/65 5050 | 1 | 7.9 | 359
 34 | 1.40 | 1 | 1 | 1 | 1 | . 25 | ŀ | l | 1 | 1 | 1 | 203 | 154 | | ٥ | 1 | 8.1 | 280 | . 20
34 | 1.32 | 14
•61
21 | 0.7 | 000 | 157
2.57
89 | 6.2
•13 | 6 . 5
6 . 5
6 | .00 | | - | 1 | 144 | 115 | | 22N/12W-19F01 D
08/24/65 5350 | - | 8
• 3 | 543 | 37. | 4.03 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 309 | 294 | | 22N/13#-01J03 D
08/24/65 5050 | | 7.7 | 543 | .85 | 2.30 | ; | 1 | 1 | l | ; | 1 | 1 | 1 | - | 1 | 306 | 207 | | 22N/13W-12K01 D
08/24/65 5050 | 1 | 7.9 | 306 | • 20 | 1 • 32 | 15 | - | 1 | - | 1 | | 1 | | 0. | 1 | 179 | 128 | | | | | | | | | | | | 1 | TABLE E-I (Continued) MINERAL ANALYSIS OF GROUND WATER | | NCH | 113 | 306 | 114 | 117 | 142 | 8
4 0 | 28 | 144 | 80 | |---|-----------------------|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|---|---|---| | 2 | SUM | 140 | 8
8
8 | - | | 159 | 133 | 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 209 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | PER | 5102 | | ŀ | 1 | - | : | | - | 1 | 1 | | MILLIGRAMS | 9 | | <u>.</u> | 1 | | 0. | 0 | 0 | : | 0 | | MIL | L | | - | | | 1 | - | | | 1 | | ~ | NO3 | | 1 | | | 1 | 0000 | .00 | 6 • 1 1 · · · · · · · · · · · · · · · · · | . 0 .
0 1 . | | ER
R LITE | VALUE | 1 • 1 | 1 | - | 1 | 1 | 9 • 8
1 2 8 | 4 • 2
• 12
15 | 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | ER LIT | W | 1 | 2 • 3 | - | | ł | 00 | . 0.2
. 0.2
. 3 | 00000 | 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | MILLIGRAMS PER LITER
MILLIEOUIVALENT PER LITER | DERCENT REACTANC | 1 | 416
6.82
1 | | 1 | : | 123
2.02
88 | 4 4 8 8 0 W | 194
3.18
88 | 1177 | | MILLIG | CO3 H | 1 | 000 | | | 1 | 000 | 000 | 8.0
.27
.7 | 0 0 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | | Z v | Υ | ; | ŀ | | 1 | : | 0 • 7 | 0.0
4
4 | .01 | 0 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + | | CDNSTITUENTS | 4 Z | ; | 1 | | - | 8.8 | .65
27 | . 2 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 18
•78
21 | 4 0 ° 0
7 4 0 | | | ΜG | 10 | 31 | 8 • 3
• 6 8 | 15 | 1.40 | .07
45 | 1 • 8
• 15
1 8 | 1 8 4 8 4 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 | 9.8
8.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 | | 11 NE PAL | A O | 28
40 | 71 2 3 . 54 2 | 32 | 22 10 1 | 29 | 13 . 65 . 27 | 8 • • • • 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 28
.40
38 | | | | LA6-EC
FLD-EC | 254 | 624 | 241 | 254 | 302 | 227 | 85 | 2
2
3
3 | 4 1 8 | | | LAB-PH L | 2.5 | ن
ق
ق | 7.6 | 8 1 | 7.4 | 7.2 | 7 • 8 | 8
• 0 | φ
• | | | TEMP FL | | ŀ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | WELL | DATE LAB TIME SAMPLER | ROUND VALLEY 23N/12W-31N01 D 08/24/65 5050 | 23N/12W-33L01 D
08/24/65 5050 | 23K/13W-25P01 D
08/24/65 5050 | 23N/13W-36P02 D
08/24/65 5050 | 22N/13W-13A01 D
08/24/65 5050 | IAYTONVILLE VALLEY
21h/14w-30M01 O
09/29/65 5050 | 21N/15W-12M02 D
09/29/65 5050 | 18N/13W-08L01 D
09/29/65 5050 | 18N/13W-16M01 D
09/29/65 5050 | ## THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW ## RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL ELECTION OF THE PARTY OF T DUE YOUR LAST OFFI JUN 5 REO'D JAN 12 1987 LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS Book Slip-55m-10, 68(J404888) 458-A-31, 5 3 1175 01002 9513 ## Nº 601061 California. Pepartment of Vater Pesources. Pullatin. TC82L C2 #2 no.130:65 v.1 PHYSICAL SCIENCES LIBRARY c.2 LIBRARY UNIVERSITY OF CALIFORNIA DAVIS Call Number: 601061 California. Department of Water Resources. Bulletin. TC824 A2 no.130:65